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Abstract
Geotechnical engineering is the science dealing with mechanics of soils and rocks
and its engineering applications. Geotechnical engineering projects vary in a wide
range, from evaluation of the stability of natural slopes and man-made soil deposits,
to the design of earthworks and foundations. Traditional methods, using manual
calculations or simplified computational methods, do not, as a rule, take into ac-
count the effects of soil-structure interaction, which can have a significant impact
on the behaviour of the structure. The aim of the research presented in this disser-
tation is focussed on developing methods to analyse soil and rock behaviour. The
research is in one part concerned with how soil-structure interaction can affect the
design of foundations and geotechnical structures. The second part of the work is
focussed on developing new methods to model geotechnical applications.

When designing foundations it is a common practice that separate numerical models
are used in the analysis of soil behaviour and of structural behaviour. A common
procedure is that the geotechnical engineer establishes a model of the site conditions
and performs a simulation of the behaviour of the ground using pre calculated load
values received from the structural engineer. The resulting settlements can then
in turn be used in the dimensioning of the structure. Using separate models can
lead to unrealistic prediction of the behaviour of both structure and load, as the
soil-structure interactions are disregarded. As the use of computational methods is
increasing, both to simulate the response in soil and during the structural design.
Paper A enlightens some of the risk that misuse of simplifications can lead to.
The paper includes an evaluation of how using the modulus of subgrade reaction
during the design of foundations can affect the dimensioning of the reinforcements
in shallow foundations.

Isogeometric analysis, is a numerical method that uses non-uniform rational B-
splines (NURBS) as basis functions instead of the Lagrangian polynomials often
used in the finite element method. These functions have a higher-order of continu-
ity, making it possible to represent complex geometries exactly. The Higher-order
continuity of the basis functions is also beneficial for problems that include fric-
tional sliding and large displacements, overcoming the numerical instability caused
by the C0-continuous basis functions often used in finite element formulations. A
common problem in many geotechnical simulations. Paper B presents numerical
simulations of soil plasticity using isogeometric analysis comparing the results to
the solutions from conventional finite element method.

The ability to predict rock behaviour using numerical models is pivotal to solve
many rock-engineering problems. Numerical modelling can also be used to improve
our understanding of the complicated failure process in rock. With models that bet-
ter capture the fundamental failure mechanisms observed in laboratory, our ability



to generate reliable large-scale models improves. Prediction of brittle fractures in
rock and soil is a complex problem with a number of active research areas, ranging
from landslides and fault mechanics to hydraulic fracturing.

In this work a modified phase-field fracture model that can predict crack nucleation
in porous rock and rock-like material is presented. In porous rock, the critical release
rate for tensile cracks can be orders of magnitude smaller than the critical energy
release rate for shear cracks and compressive stresses can lead to the formation of
compaction driven cracks. Paper C and Paper D demonstrates the capability of the
proposed phase-field model for simulating the evolution of mixed mode fractures
and compressive driven fractures in porous artificial rocks and Neapolitan Fine
Grained Tuff.



Populärvetenskaplig sammanfattning
Alla anläggningsprojekt, vare sig det gäller en bro, tunnel eller byggnad, har ge-
mensamt att konstruktionen måste stödjas av den underliggande och omgivande
marken. Konstruktionens egentyngd och eventuella yttre laster kommer att över-
föras till den underliggande och omgivande marken. Det är därför viktigt att kun-
na förutsäga eventuell rörelse eller brott i marken vid utformningen av varje ny
konstruktion. För enklare konstruktioner kan dessa beräkningar ofta utföras med
förenklade metoder eller handberäkningar. Vid större byggnadsprojekt eller vid
komplicerade markförhållanden krävs däremot ofta numeriska beräkningsmetoder.
En stor fördel med numeriska simuleringar är att flera olika alternativ kan testas
på hela konstruktionen innan slutgiltiga designbeslut tas, vilket kan innebära be-
sparingar i både design- och produktionsledet. Vidare finns möjlighet att snabbt
förändra designen om förutsättningarna blir förändrade, eller om det under produk-
tion visar sig att andra grundförhållanden skiljer sig från de förhållanden som man
har utgått från vid projekteringen. När det gäller komplicerade anläggningspro-
jekt används numeriska beräkningsmetoder både i grundläggningsdimensioneringen
och i betong- eller ståldimensioneringen. I det arbete som presenteras i den här
avhandlingen har olika typer av numeriska metoder för simulering av geotekniska
tillämpningar undersökts. Ett vanligt förfarande är att geotekniker skapar en teore-
tisk modell av grundläggningsförhållandena och gör beräkningar baserade på laster
som har tagits fram av konstruktören. Resultaten från geoteknikerns beräkningar
används sedan av konstruktören vid dimensionering av konstruktionen. Vid nume-
riska simuleringar för konstruktioner där det är av stor vikt att interaktionen mellan
jord och konstruktion modelleras på ett realistiskt sätt är en gemensam modell ett
bättre tillvägagångssätt.

I den första delen av det här arbetet undersöks hur användningen av separata mo-
deller kan påverka resultaten vid numeriska simuleringar av geotekniska konstruk-
tioner. En metod som undersöks är att använda isogeometrisk analys för simulering
av jord, en numerisk metod som har gett goda resultat för analys av kontakt mel-
lan två ytor som utsätts för stora relativa deformationer med samtidig glidning, ett
område som ofta leder till numerisk instabilitet med den metod som oftast används
för numeriska simuleringar idag.

Vid belastning av så kallade duktila material, t.ex. segt stål, uppkommer synliga
deformationer innan sprickor bildas. I spröda material däremot, t.ex. sten, sker of-
ta sprickbildning utan någon synlig varning, där sprickorna dessutom kan växa i
mycket höga hastigheter. I den andra delen av det här arbetet behandlas sprickor i
porösa bergarter. På grund av komplexiteten i sprickprocesserna spelar numeriska
metoder och högpresterande datorer en avgörande roll i modern brottmekanik. När



Figur 1: Exempel på geotekniska konstruktioner.

en spricka utvecklas uppstår det förändringar i objektets geometri, vilket konventio-
nellt leder till att en ny geometri måste modelleras för varje förändring i sprickan,
med långa beräkningstider som följd. Nyligen har alternativa metoder för numerisk
simulering av spröda brott utvecklats. I de nya metoderna approximeras sprickorna
av ett så kallat phase-field, vilket jämnar ut sprickans gräns över ett litet områ-
de och inga diskontinuiteter införs i beräkningsmodellen. I det här arbetet har en
numerisk metod för simulering av spröda brott vidareutvecklats och tillämpats för
simuleringar av sprickor i sten och stenliknande material. Denna metod leder till ett
antal fördelar jämfört med konventionell brottmekanik, eftersom implementeringen
inte kräver att sprickytorna spåras och modelleras när en spricka utvecklas.

Figur 2: Genom att approximera en spricka med ett phase-field kan geometrin vara
konstant genom hela simuleringen.
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Part I

Introduction and overview





1 Introduction

All civil engineering projects, whether a bridge, tunnel or building, have in common
that the structure has to be supported by the underlying and surrounding soil or
rock. The weight and loads applied to the structure will be transferred to the un-
derlying and surrounding material. It is therefore essential to predict any potential
movement or failure of the underlying material as a part of the design of any new
structure. Consequently, it is also important to assess how any movement in the
underlying material affects the structure itself. Understanding the behaviour of
geomaterials (e.g., clay, sand, gravel, or rock) and their interaction with structures
is therefore important for a realistic and economic analysis of all civil engineering
projects. Here, it is in place to state, that, for the remainder of this work, Geo-
technical engineering is the branch of civil engineering concerned with construction
built on or surrounded by the ground, whereas Geomechanics is the science in which
the mechanical behaviour of soil and rock under loading is studied.

In contrast to other construction materials, geo-materials are natural materials.
Hence, the material properties are not selected by an engineer but predetermined
by the location of the structure, and it is therefore important to have deep un-
derstanding of how different soils and rocks behave under loading. Soil and rock
are natural materials with properties that distinguish them from other construction
materials, and even though soils in general consist of rock that has been weathered
into smaller particles over time there are important differences between them. Soils
and rocks are multiphase materials, consisting of solid particles with intermediate
pores filled with air or water, where the size and shape of the grains can vary form a
couple of millimetres in sand to less than 2 µm in clayey soils. Whereas, most rock
consists of a composition of crystals and amorphous particles bonded with varying
amounts of cementing material. The chemical composition of the crystals may be
relatively homogeneous, as in some limestone, or very heterogeneous, as in granite.
The size of the crystals may also vary both in size and distribution, of a typical size
no greater than a few centimetres. Due to these similarities between soil and rock,
at one end of the spectrum, rock mechanics grades into soil mechanics and at the
other end, at great depths, rock mechanics grades into the mechanical aspects of
structural geology. In turn, the behaviour of a soil can vary greatly depending on
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the size and the shape of the individual particles, the consolidation grade and the
porosity.

This work focusses on two important aspects of geotechnical engineering: the use
of numerical methods and the simulation of fracture propagation in rocks. The first
two papers are focussed on how modern numerical methods can make a difference in
the design procedure of geotechnical structures. When designing geotechnical con-
structions, the complicated properties of soil as construction materials often make
advanced analysis necessary. The design of geotechnical problems often includes a
number of complex physical aspects, ranging from highly non-linear stress-strain
relations to pore-pressure variations. To overcome these difficulties, the use of
numerical analysis, e.g., the finite element method (FEM), has become common
practice in modern geotechnical engineering. The first paper is focussed on how
the use or misuse of numerical methods might affect the design of rather simple
foundations while the second paper explores the possibility of using isogeometric
analysis to simulate soil behaviour. Another important aspect in geotechnical en-
gineering is the ability to predict and realistically reproduce rock mass behaviour
using numerical models. Numerical modelling can improve our understanding of the
complicated failure process in rock and the many factors affecting the behaviour of
fractured rock. When our models manage to better capture the fundamental fail-
ure mechanisms observed in laboratory, our ability to generate reliable large-scale
models improves. In Paper C and Paper D an alternative method to simulate crack
propagation in rock using a phase-field fracture model is presented.

1.1 AIMS AND OBJECTIVES

The original aim with this research was to develop methods to improve the design
of foundations and geotechnical structures using advanced numerical methods, with
a focus on how numerical methods can affect the design of geotechnical structures.
In general, structural- and geotechnical engineers use separate models during the
design procedure, which may lead to loss of synergy effects between structural
elements and the underlying soil. Moreover, it is common practice to use sim-
plifications, e.g., by idealising a soil as a series of independent springs to model
soil-structure interaction. The aim with Paper A, was to quantify the effect of
using simplified methods when designing simple foundations.

During the work with the Paper A it became obvious that, how the soil-structure
interaction is modelled can have a large influence on the results and that commer-
cial tools often use different methods and simplifications to model the soil-structure
interaction. Even though soil-structure interaction can be modelled using a num-
ber of different techniques, too crude simplifications can lead to misconceptions.
Moreover, geotechnical analyses often include soil-structure interaction problems
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with friction and sliding, which can be difficult to analyse even using FEM, as the
C0-continuous basis functions commonly used can lead to numerical instability.

In recent years isogeometric analysis has shown promising results for complex con-
tact problems. The purpose with Paper B was to investigate the effect of the
higher order basis functions used in the isogeometric framework on simulations of
soil behaviour. Even though the result presented in Paper B demonstrated that the
isogeometric framework can be used to simulate soil behaviour and plastic deforma-
tion, it also showed that the work with implementing both a realistic soil plasticity
model and a modern contact algorithm would be a too great a commitment for the
scope of this work.

Paper C and Paper D focus on another important aspect in geotechnical engineer-
ing, the ability to predict and realistically reproduce failure in rock. In recent times,
phase-field fracture models have been introduced as an alternative method for nu-
merical simulations of brittle fractures. The method has been used with success
in a number of fields, including dynamic fracture mechanics [1–3], coupled thermo-
mechanical-driven fractures [4], and high-order phase-field approaches [5], to name
a few. However, these contributions assume that the critical energy release rate
for different fracture modes are equal, which is not the case for rocks and rock like
materials, see e.g., [6]. The aim of the work that resulted in Paper C and Paper D
was to present a modified phase-field fracture model that distinguishes fractures in
Mode I and Mode II as well as fractures driven by compressive stresses.

1.2 DISPOSITION

This thesis consists of two parts, where the first part is an overview of the work
divided in six chapters. The second part consists of four appended papers produced
during this work.

The chapters of the first part of this thesis are organised as follows. Chapter 1 gives
an introduction to the thesis, stating the aims and objectives of this work. Chapter
2 gives a summary of the appended papers. Chapter 3 gives a brief introduction
to geotechnical engineering. Chapter 4 introduces the theoretical framework of
soil and rock mechanics. Chapter 5 gives an overview of the theories and numerical
methods used to simulate soil and rock behaviour in this work. Chapter 6 concludes
the thesis.
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Paper A

Paper A presents an evaluation on how using the modulus of subgrade reaction
during the design of foundation can effect the dimensioning of the reinforcements
in shallow foundations. To investigate how common misconceptions can affect the
design, numerical studies using the modulus of subgrade reaction to idealise the
behaviour of the underlying soil have been compared to full finite element analysis.
To evaluate the reinforcement needs in the foundation, the advanced three-layer
model described in [7], have been implemented and used within a general purpose
FE-tool.

The paper concludes that it is important to have a good understanding of the
concept behind the modulus of subgrade reactions, if it is to be used to design the
reinforcements in concrete slabs. It also concludes, that using an incorrect value of
the subgrade modulus, ks, can lead to erroneous dimensioning of the reinforcement.

Contributions by Alex Spetz

Alex was the main author of the paper, implemented the method and carried out
all the simulations using Comsol Multiphysics and MATLAB as well as drawing the
main conclusions.

Paper B

Paper B presents numerical simulations of soil plasticity using isogeometric ana-
lysis. The results from the isogeometric analysis is compared to conventional finite
element analysis, to evaluate the effects of using higher-order basis-functions of for
simulation of soil plasticity. The paper gives a brief outline of the theory behind
the isogeometric concept. The paper includes a presentation of the Drucker-Prager
criterion, which is used to simulate the soil behaviour in this work. The paper
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concludes with numerical examples in two- and three-dimensions, which assess the
accuracy of isogeometric analysis for simulations of soil behavior. The numerical
examples presented show that, for drained soils, the results from isogeometric ana-
lysis are overall in good agreement with the conventional finite element method in
two- and three-dimensions.

Contributions by Alex Spetz

Alex was the main author of the paper, planned the research and implemented the
isogeometric framework and the material model in FORTRAN as well as carrying
out the reference simulations using Comsol Multiphysics.

Paper C

In Paper C a modified phase-field fracture model for simulation of crack propaga-
tion in porous rocks is proposed. The presented model introduces a split of the
fracture energy release rate to capture the characteristic behaviour of fractures in
porous rock. In porous rock, the critical release rate for tensile cracks can be orders
of magnitude smaller than the energy release rate for shear cracks and compressive
stresses can lead to the formation of compaction bands. To capture these character-
istic behaviours we have introduced a split of the fracture energy release rate into
three components. To demonstrate the capability of the modified phase-field frac-
ture model first introduced in this work, we have compared the numerical results to
experimental observations performed on rock samples subjected to uniaxial plane
strain compression. The presented comparison shows that the modified phase-field
fracture model gives results in good agreement to the experimental observations
both with respect to crack patterns and critical stress loads. It has also been shown
that the proposed phase-field model is able to reproduce the formation of compac-
tion bands as well as complex crack patterns without any additional algorithmic
treatment.

Contributions by Alex Spetz

Alex was the main author of the paper, developed and implemented the method
and carried out the numerical simulations, as well as being a large contributor to
the drawn conclusions.
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Paper D

Paper D suggests a modified phase-field model for simulating the evolution of mixed
mode fractures and compressive driven fractures in both a porous artificial rock and
in Neapolitan Fine Grained Tuff. The numerical model has been calibrated using
experimental observations of rock samples with a single saw cut under uniaxial plane
strain compression. For the purpose of validation, results from the numerical model
are compared to Meuwissen samples with different angles of rock bridge inclination
subjected to uniaxial compression. The simulated results are compared to experi-
mental data, both qualitatively and quantitatively. It is shown that the proposed
model is able to capture the emergence of shear cracks between the notches observed
in the Neapolitan Fine Grained Tuff samples as well as the propagation pattern of
cracks driven by compressive stresses observed in the artificial rock samples. Addi-
tionally, the typical types of complex crack patterns observed in experimental tests
are successfully reproduced, as well as the critical loads.

Contributions by Alex Spetz

Alex was the main author of the paper, took part in the planning of the paper
and developed and implemented the method as well as carried out the numerical
simulations, as well as being a large contributor to the drawn conclusions.





3 Geotechnical engineering

Geotechnical engineering is the science dealing with mechanics of soils and rocks
and its engineering applications. Geotechnical engineering projects vary in a wide
range, from evaluation of the stability of natural slopes and man-made soil depos-
its, to design of earthworks and foundations. Figure 3.1 illustrates some examples
of geotechnical structures. Research within the field ranges from analytical and
numerical studies of geotechnical problems to constitutive modelling, experimental
modelling and design. The work of geotechnical engineers plays an important role in
all civil engineering projects built on or in the ground, and is vital during evaluation
of natural hazards such as earthquakes, liquefaction, sinkholes and landslides. This
chapter starts with a historical overview and introduction to geotechnical engineer-
ing and is continued by an introduction to the design objectives and requirements
for geotechnical analysis.

shallow foundations piled foundations retaining structures

embarkments cut slopes tunnels

Figure 3.1: Examples of geotechnical structures.
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3.1 BACKGROUND

Historically, geotechnical engineering was applied by trial and error or observational
experience. Problems like the notorious leaning tower of Pisa motivated engineers
to take a more scientific approach to geotechnical engineering. The first documented
theories in soil mechanics where presented by Charles Augustin de Coulomb to the
Academy of Science in Paris, year 1773. The theory regarded active and passive
earth pressure and was published three years later, entitled "Essai sur une applic-
ation des régles des maximis et minimis à quelques problémes de statique relatifs
à l’architecture", the theory remains in use even to this day in basic engineering
practice. During the eighteenth and nineteenth century a series of key discoveries
in fundamental soil-mechanics and flow through porous media were published by
Coulomb, Rankine, Darcy, Mohr and Atterberg. Karl von Terzaghi, an Austrian
engineer, is often regarded as the father of modern soil mechanics and considered
to have been the first person to achieve an engineering understanding of soil as an
engineering material, with properties that can be measured in standardised ways.
In his work "Erdbaumechanik" published in 1924, he presented his theory of con-
solidation and the effective stress, which revolutionised the field of geotechnical
engineering, suggesting that the deformations in a soil are governed by the effective
stresses [8].

The increased knowledge of soil behaviour led to development of approximate meth-
ods for solving a number of engineering problems. However, these approximate or
simplified methods do not provide sufficient solutions for the complexities of many
geotechnical problems. Much progress has been made in the development of con-
stitutive models, where early work led to the development of the Mohr-Coulomb
criterion, developed from Charles Augustin de Coulomb’s work concerning shear
failure in soils and from Christian Otto Mohr’s work regarding Mohr’s circle. The
criterion is a rather crude simplification of soil’s behaviour. Even though it rep-
resents the failure for drained conditions rather well, the effective stress path that
is followed in un-drained materials may deviate significantly from observations [9].
In 1952, Drucker and Prager presented the Drucker-Prager criterion which can be
seen as a generalisation of the Mohr-Coulomb criterion that accounts for the effects
from all principal stresses [10]. The Drucker-Prager criterion takes the shape of a
circle when viewed in the deviator plane, as opposite to the Mohr-Coulomb criterion
which presents sharp corners. This makes the Drucker-Prager criterion more stable
in numerical calculations than the Mohr-Coulomb criterion at the cost of being a
cruder representation of soil behaviour.

To overcome the weaknesses posted by the Mohr-Coulomb and Drucker-Prager
criteria, researchers have investigated the possibility of modelling soil as a strain-
hardening material. The soil mechanics group at Cambridge University made sig-
nificant contributions to the work around these strain-hardening models, referred
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to as critical-state models, [11]. The research led by Professor Sir Alec Skempton
at the Imperial Geotechnical Laboratories, led to the formulation of the Cam-Clay
model, Roscoe et al. [12]. Professor John Burland suggested a modification of the
model, which subsequently led to the Modified Cam-Clay model presented in [13].
Although the Cam-Clay models achieve better predictions compared to observed
soil behaviour than the Mohr-Coulomb and Drucker-Prager models, the model is
limited when modelling frictional materials and fail to predict observed softening
and dilatancy of dense sands and undrained response of very loose sands [14].

Compared to the field of soil mechanics, the development of rock mechanics has
been much slower, and until the middle of the 20th century rock mechanics was a
branch of soil mechanics. Unfortunately, accidents have been a major contributing
factor to the advancement of rock mechanics, where two major disasters in Europe
stand out as the triggering factor for the creation of the International Society for
Rock Mechanics. In December of 1959 the Malpasset dam, in southern France,
burst. The cause of the disaster is foremost attributed to an inadequate geological
survey. Geological investigations performed after the dam’s collapse showed that
it had been constructed on gneiss, an impermeable rock. The survey also found a
fault in the bedrock just downstream of the dam. When the water level in the dam
increased due to heavy rainfall the compressive forces in the foundation led to an
increased permeability of the bedrock. This in turn led to uplift pressure at the left
abutment, which is believed to have been the main cause of the dam failure. The
second accident occurred a few years later in Vojant, Italy, where in October 1963
a major rockslide into the dam lake caused a 250 metres tsunami. The tsunami led
to the complete destruction of several villages and towns, and close to two thousand
dead. With increased efforts to get a better understanding of rock behaviour, the
field of rock mechanics has made great advancements during the past decades.

As rock mechanics historically is closely related to soil mechanics, the Mohr-Coulomb
criterion is a common model used also for analysis of rock. However, experimental
data showed a much larger ratio of the compressive to tensile strength than pre-
dicted by the Mohr-Coulomb criterion. During the the years numerous mathemat-
ical models based on the Mohr-Coulomb criterion have been proposed to overcome
this issue. However, rock masses are in general broken up by joints and faults
containing pressurised fluids, which is not accounted for in Mohr-Coulomb based
models. In 1980, Evert Hoek and E. T. Brown presented the original version of their
widely used failure criterion, which is capable of fitting data from many different
rocks. The Hoek-Brown failure criterion is an empirical failure criterion with the
basic idea that the behaviour of rocks can be captured by reducing the mechanical
properties of an intact rock by adding correctional coefficiants. These correctional
coefficions may be due to the existence of joints and faults in the rock mass [15].
With an increased capability of predicting failure in rock, the number of engin-
eering projects involving rock has increased, either as construction material or as
foundation. As the field has grown, today rock-mechanics is an interdisciplinary
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field, ranging from engineering geology and hydraulics to fracture mechanics and
physics.

The development of numerical methods for geotechnical applications is placing new
demands on the geotechnical engineers. To perform good numerical analysis it
is essential to have an understanding of the constitutive model applied and its
shortcomings along with a sound knowledge of the governing design objectives.

3.2 DESIGN OBJECTIVES AND REQUIREMENTS

The first requirement when designing a geotechnical structure is to determine
ground conditions. Since the material properties of soil and rock vary with both
location and depth, almost all major civil engineering projects start with field in-
vestigations from which the layering and properties of the ground are determined,
as well as the position of the ground water table. The resulting stratigraphy of
the subsurface can then be used in the design. To have a good stratigraphic model
of the ground conditions is essential in the design of geotechnical structures. For
example, when designing a new foundation, a ground layer model is used to en-
sure that the foundation can withstand any man made and natural loads, vertical
and lateral pressures from strong winds or earthquakes as well as the weight of the
building itself. Design objectives vary depending on the type of structure that is
designed. It is, however, essential to ensure stability for all geotechnical structures.
Figure 3.2 illustrates some of the design objectives for a spread footing [16]. In
urban areas, the governing design requirement is often ensuring that the structure
does not initiate movements in the soil that affect existing buildings and services.
In addition, it is necessary to assess if the construction might affect the groundwater
table and its implication on nearby structures.

3.3 NUMERICAL ANALYSIS IN
GEOTECHNICAL APPLICATIONS

Due to the complex non-linear mechanical behaviour of soils and rock, simple ana-
lytical methods often fail to describe how the ground and structures interact. The
advancement of computers in recent decades has made it possible to develop mod-
els using realistic non-linear relations to describe these mechanical behaviours. In
modern geomechanics, computational methods e.g., finite element analysis (FEA)
or finite different analysis (FDA), are widely used to predict the behaviour of found-
ations, structures and soil bodies. One big advantage of using numerical methods
is that one analysis can be used to study a large number of design objectives at
the same time, e.g., movement in both soil and structure, variation of pore water
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Figure 3.2: Design objectives for spread footings.

pressure as well as assessment of stresses and forces in the structural elements. Us-
ing manual calculations, these design objectives often require separate calculations.
Another advantage of using numerical simulations is that various design options can
be tested before final design decisions are made, which can result in economical sav-
ings. Furthermore, it is possible to quickly update a computer model and perform
a new analysis. Another important aspect when modelling soils is the flexibility
that a computer simulation brings during construction. If the ground conditions
prove to be different during the construction than the preliminary survey indic-
ated, an updated simulation can be conducted swiftly. When dealing with complex
engineering projects, computational methods are often used both in the design of
the foundation and in the design of the concrete or steel structure. Unfortunately,
separate numerical models are often used to analyse soil behaviour and for design
of the structure. A common procedure is that the geotechnical engineer establishes
a model of the site conditions and performs a simulation of the behaviour of the
ground using pre calculated load values received from the structural engineer. The
resulting settlements can then in turn be used in the dimensioning of the struc-
ture. Using separate models can lead to unrealistic prediction of the behaviour of
both structure and load, as the interactions between structural elements and soil is
disregarded.
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3.4 SOIL-STRUCTURE INTERACTION

For many geotechnical structures and foundations, relative motions occur between
soil and structure. These relative motions at the interfaces can have a large in-
fluence on the overall behaviour of the system [17]. It is, therefore, important to
incorporate the soil-structure interaction effects during the design. Examples of
soil-structure interaction effects are illustrated in Figure 3.3. The figure shows a
piled raft subjected to a spread load. The loading of the structure will give rise
to stresses in the underlying and surrounding soil. Using manual calculations, the
load on the structure is assumed to be transferred solitary through the piles to the
surrounding soil. In reality, part of the load will be transferred directly from the
raft to the underlying soil. Stress fields may also create arches between the struc-
tural components. Some of the methods that are used to simulate soil-structure
interaction are discussed in the following.

Figure 3.3: Soil structure interaction.

Spring idealisation

During the design of structural elements, a common method to model soil-structure
interaction is to idealise the soil as a series of independent springs. The spring stiff-
ness is often referred to as modulus of subgrade reaction and was first introduced
by Winkler [18]. The original application was to compute the stresses and deform-
ations in railroad structures. The method does, however, only give information
on the structure, and gives no information on displacements or stress levels in the
soil. Moreover, it can be difficult to determine the correct stiffness of the springs.
The use of subgrade reactions during the design of foundations can therefore lead
to misconceptions of the structural response. Figure 3.4 demonstrates the effect
of using modulus of subgrade reaction for a raft foundation subjected to a spread
load compared to a full numerical model. Comparing the predicted displacements
and stress distribution, it becomes clear that the simplified method can lead to
inefficient designs.
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Figure 3.4: Illustration of predicted values, a) using springs to represent soil be-
haviour compared to, b) using a joint model that includes both the
soil and structure.

Interface elements

Another method used to evaluate the effects of soil-structure interaction is to em-
ploy interface elements. These elements are placed in-between the soil and structure
elements, simulating the behaviour in the soil close to the structure. The interface
elements range from simple models that assume no relative motion to complex con-
stitutive models. Interface elements were initially developed for rock joints, and
typically use normal and tangential stiffness to model the pressure transfer and
friction at the interface. One disadvantage using interface elements is that they
have to be predefined in the model. They are hence only suitable for predefined
interfaces. For a number of geotechnical problems, e.g., pile installations and re-
taining walls, the soil-structure interaction can be subjected to large displacements
and frictional sliding. Interfaces where sliding and large displacements take place
cannot be modelled properly using simplified boundary conditions or traditional
interface elements. Using interface elements, sliding along an interface will lead to
large distortions of the interface elements. The response can, therefore, be mesh
dependent at large displacements.

Contact mechanics

A more rigorous approach, to tackle such problems, is to consider the contact con-
straint kinematics at the interface. Therefore, computational contact mechanics
would be a more fit method to use. However, contact problems that include fric-
tional sliding and large displacements can suffer from numerical instability caused
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by the C0-continuous basis functions used to discretise the geometry in standard
finite element method formulations.

3.5 CONCLUSIONS AND MOTIVATION

The interaction between soil and structure can have a large influence on the response
of geotechnical structures. As simplified methods are used by engineers in practise,
it is important to enlighten how these simplifications affect the design of common
structures such as foundations. The first part of this work has, therefore, focussed
on evaluating and comparing how simplified methods used in practice affect the
design.

For numerical simulation of more complicated structures, the interaction effects
between soil and structure can be decisive. For structures where both large rel-
ative displacements and sliding take place between the soil and the structure, all
methods used today have disadvantages. Recent development using isogeometric
analyses (IGA), a numerical method that uses smother shape functions then the
conventional finite element method (FEM), has demonstrated improvements to sim-
ilar applications within other disciplines [19]. Since contact problems are a major
part of soil-structure interaction simulations, IGA presents itself as an interesting
alternative for analysis of geotechnical problems. Promising results using IGA for
fluid flow through porous media have already been presented, [20], [21]. As geo-
technical applications often include both complicated contact problems and fluid
flow, it is interesting to assess how the isogeometric framework performs for soil
plasticity.



4 Geomechanics

Geomechanics is the science in which the mechanical behaviour of soil and rock
under loading is studied. Hence, the theoretical frameworks of geomechanics are
founded on the pillars of soil and rock mechanics. Even though both soils and rocks
are naturally occurring material with some similarities and even though soils are,
in general, made up of rock that has been weathered into smaller particles over
time, there are important differences between the two materials. In fact at one end
rock mechanics grades into soil mechanics, but at the other end, at great depths,
rock mechanics grades into the mechanical aspects of structural geology. In turn,
the behaviour of a soil can vary greatly depending on the size and shape of the
individual particles, the consolidation grade and porosity. Larger particles form
frictional soils, such as gravels and sands whereas clayey soils are made up of finer
particles. To perform a viable analysis of geotechnical applications it is essential
to have a sound understanding of both soil and rock mechanics. This chapter will
give a brief introduction of both soil and rock mechanics, which together form the
basic theoretical framework for geotechnical analysis.

4.1 SOIL MECHANICS

A soil generally consists of solid particles with intermediate pores filled with air or
water. Figure 4.1a illustrates an idealisation of a sand, that has a grain size in the
range of 0.063 to 2 mm in diameter. In clayey soil the particles are considerably
smaller, with a size less than 2 µm, with flake shape, see Figure 4.1b. The amount
of effort that is required to displace a group of particles in a soil influences the
compressibility, deformation and strength properties of the soil.

4.1.1 Characteristic behaviour

During analysis of soil behaviour in an engineering practice it is important to have
knowledge of both the mechanical and the hydraulic behaviour of the soil. Most
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a) b)

Figure 4.1: Idealisation of a granular and clayey soil where white represent solid
particles and grey fluids. a) granular soil. b) clayey soil.

other construction materials, such as concrete, steel and even wood exhibit linear
stress-strain behaviour up to well-defined stress limits and the response of these
materials can therefore often be analysed using Hooke’s law. Soils, however, do not
display this linear-elastic behaviour, e.g., a soil in compression becomes gradually
stiffer with an increased load. The stiffening behaviour in soil during compression
depends on the composition of the material. The reluctance to deform in a soil
differs from most other engineering materials, where the deformational resistance is
provided from chemical forces binding atoms, molecules and particles together [22].
These forces do exist in soils as well but do not have a great influence on the
compression and strength properties. Instead the soil strength properties depend
primarily on gravity and on stresses applied to the soil. This has a profound im-
pact on soil behaviour. In a group of particles subjected to pure compression the
contact forces between the particles will increase with a decreasing volume, giving
the structure of particles a rising strength. Figure 4.2 illustrates the response in a
group of particles subjected to pure compression. In Figure 4.2b the compressive
stress is given on the vertical axis and the negative volume strain, εvol = ∆V/V , on
the horizontal axis. The particle structure of soil is also the reason for low or next
to non-existing tensile strength of soil, as contact between two particles will not
transfer any tensile stresses. If a group of particles, instead, is subjected to a shear
force the particles will start to slide over each other, causing large deformations.

−σ0

−σ0

−σ0

−σ0

a)
−εvol

−σ0

b)

Figure 4.2: a) Soil subjected to compression. b) Generalisation of soil response
during compressive loading.



4.1 Soil mechanics 19

Figure 4.3 illustrates the expected stress-strain behaviour for a group of soil particles
subjected to a shear stress. Moreover, by subjecting the group of particles to an
isotropic stress the contact forces between the particles get stronger. Hence, the
resistance for a shear failure in a soil is increased with an increased isotropic stress.
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j
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-εij

τij/σ0
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Figure 4.3: a) Soil particles subjected to shear stress. b) Stress-strain relation for
a soil during distortion.

Compared to other engineering materials, soil displays rather large deformations at
low stress levels. Most of the deformations in soil occur due to particle rearrange-
ment. As the particles cannot be expected to return to their original configuration
when unloaded, most soils exhibit irreversible deformations. One can therefore ex-
pect to observe permanent deformations in a soil subjected to a loading-unloading
cycle. A typical behaviour for a soil subjected to a loading-unloading test is il-
lustrated in Figure 4.4. It can be seen from the figure that during the reloading
phase the soil is much stiffer than during the first loading. This behaviour is due
to the fact that particles will be less prone to move after the initial loading. The
irreversible or plastic strains are denoted as, εpij and the elastic strains are denoted
εeij . The total strains are given from

εij = εeij + εpij (4.1)

Effective stress

The structure of soil is of great importance as the particle structure of a soil can
carry both normal and shear stress, whereas the liquid and gas phases can carry
normal stress but not shear stress [22]. To separate the stress carried by the soil
skeleton to the stress carried by the pore water pressure Karl von Terzaghi intro-
duced the concept of effective stress, [23]. Using the concept of effective stress, the
total stress σij in a soil is defined as

σij = σ′ij + uδij (4.2)
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−εij
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Figure 4.4: Load-reload cycle.

where the effective stress, σ′ij , is the part of the stress carried by the soil particles,
and the pore pressure u, is the part of the stress carried by the fluid in the voids.
The principle of effective stress contributes to the stress-strain relationship, the
change in volume and strength properties of the soil is independent of the pore
pressure [22]. As the gas or water filling the pores, generally, is unable to carry
shear stress, it is essential to separate the effective stress and the pore water pres-
sure when formulating the stress-strain relations and strength properties of soils.
Both the total stress, σij , and the pore water pressure, u, can be established from
measurements or computed using external and body forces.

Dilatancy

Soils subjected to shear are prone to volume changes. A loose sand will be prone to
contract when subjected to shear. Densely packed sand can, however, only deform
when particles shear over each other, creating larger space between the particles.
The volume increase coupled to shear deformations in soil is called dilatancy and
was first discovered by Reynolds in 1885. The dilatancy can have large effect on a
soil behaviour as the volume change affects the pore water pressure and in turn the
strength of the soil. The dilatancy is often used to govern the potential functions
in constitutive modelling of soils [22].

4.1.2 Failure in soil

To model soil behaviour, a number of constitutive models have been developed.
These stress-strain relations and strength properties of soils are mathematical equa-
tions based on empirical testing. The Mohr-Coulomb criterion, was the first con-
stitutive model developed to model soils, and is still one of the most widely used
models in soil-mechanics. The criterion states that shear failure τf is a function of
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the effective normal stress σ′ on the shear plane as

|τf | = c′ − σ′ tanφ′ (4.3)

where the effective stress σ′ is defined as positive in tension. The cohesion para-
meter, c′, denotes the intercept for σ′ = 0, and φ′ is the internal friction angle.
The Mohr-Coulomb failure criterion will be discussed more thorough later, here it
is only presented to illustrate some parameters that are used to describe the shear
strength in soils, illustrated in Figure 4.5.
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Figure 4.5: a) The failure plane , b) The Coulomb criterion and Mohr’s circle.

Moreover, Figure 4.6 illustrates the effect of pore fluid pressure on soil with regard
to the Mohr-Coulomb failure criterion, where a) shows the stress state without any
existing pore pressure and b) the effective stress. From the figure it becomes clear
that an increased pore pressure can lead to failure. It should be noted that the
quantity pressure, which conventionally is defined to be positive in compression in
this work is chosen to be positive in tension.
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Figure 4.6: The effect on pore pressure of soil, with regard to the Mohr-Coulomb
criteria. a) Stress state with no pore fluid pressure. b) Stress state
with existing pore fluid pressure.

However, as mentioned earlier the strength of soil in reality may depend on a large
number of additional parameters, i.e.,

τf = F (c, φ, σ, p, e, C,H, T, ε, ε̇) (4.4)
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where e is the void ratio, C the soil composition, H represents the stress history and
T the temperature. The parameter ε denotes, as in the previous, the strain state and
ε̇ the strain rate. Depending on the material model used to model the soil behaviour
a number of these parameters needs to be established, this is generally done using
specific soil tests. Material tests are expensive to preform and simulations of soil
behaviour should be conducted in an early stage of any design precess, as the
properties of the soil can have a large effect on the overall cost of the project. It is
important to have a good understanding of the strength and weaknesses of different
constitutive models, so that suitable soil tests can be performed early on in any civil
engineering project. Without the right material tests, the results from any analysis
can be questionable. To be able to understand and evaluate the credibility of the
results from a computational simulation, it is also important to have knowledge of
different failure and deformation behaviours for different soils. Some typical stress-
strain relations and failure modes for different soils are illustrated in Figure 4.7.
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Figure 4.7: Typical stress-strain behaviour for different soils.

The deviator stress on the y-axis in Figure 4.7 is the difference between the major
and minor principal stresses in a triaxial test. From Figure 4.7 it can be seen that
the stress-strain behaviour ranges from very brittle to ductile behaviour. Table 4.1
indicates the typical failure for soils, useful when evaluating results from analysis
[22].
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Table 4.1: Typical behaviour for failure of different soils.

—————————————
quick clays (Brittle failure)
cemented soils
heavily overconsolidated clays
dense sands
—————————————
insensitive clays (Ductile deformation)
remolded clays
loose sands

In addition to the parameters mentioned above, there are indeed many other factors
that affect how a soil behaves during loading, i.e., load history, effective confining
pressure and consolidation rate. The term consolidation describes the compaction
of a soil, that is, the volume change of a soil as water content is reduced due to an
increased overburden or change of the groundwater level.

4.2 ROCK MECHANICS

Most rock consists of a composition of crystals and amorphous particles associ-
ated with varying amounts of cementing material. The chemical composition of
the crystals may be relatively homogeneous, such as in some limestone, or very
heterogeneous, as in granite. The size of the crystals may also vary both in size and
distribution, of a typical size no greater than a few centimetres. The crystals gen-
erally represent the smallest scale at which the mechanical properties are studied,
and deformations of the crystals provide important information about the history
of the rock. In addition, the boundary between the crystals represents a weakness
in the structure of the rock, which otherwise can be seen as continuous. However,
rock mechanics is mostly focussed on rock masses ranging from a few metres up
to hundreds of metres, the scale commonly found within civil engineering projects
and the mining industry. On this scale there are often existing cracks, joints and
faults that form discontinuities in a rock mass. These structural features will have
an effect on the overall mechanical properties of the rock mass. The ability to nu-
merically model the behaviour of rock masses is essential to many problems that
geotechnical engineers encounter and to realistically reproduce rock mass behaviour
it is necessary to determine the numerical values of the rock’s mechanical properties,
i.e., Young’s modulus, density and Poisson’s ratio. For practical purposes the ma-
terial properties are best obtained from laboratory measurements made on smaller
rock specimens. These specimens are, in general, too small to capture the overall
properties of a large rock mass, but of a sufficient size to contain enough structural
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variations to adequately give a homogeneous representation of the intact rock.

4.2.1 Characteristic behaviour

The fact that rocks are a composition of compressed particles often makes them
heterogeneous and porous in nature, which in turn results in a complex behaviour
during external loading. To get a better understanding of the characteristic beha-
viour of intact rock during external loading we consider rock specimen subjected
to uniaxial compression. Figure 4.8 displays a typical stress-strain curve from a
uniaxial compression test of a rock specimen. From the stress-strain curve it is pos-
sible to identify three distinct segments during the loading before the peak stress, or
uniaxial compressive strength, σc is reached. Generally the first part of the stress-
strain curve for rock under uniaxial compression can be identified by a positive
second derivative, which may occur due to closing of voids or flaws in the specimen.
The second part of the curve is often close to linear, and moreover, during the first
two segments the stress-strain behaviour is generally nearly elastic. However, at
around 50-70 % of the compressive strength, σc, irreversible micro cracks start to
appear and a softening behaviour can be observed in the stress-strain curve, i.e.,
part three in Figure 4.8.
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Figure 4.8: a) Rock specimen subjected to compression. b) Characteristic stress-
strain behaviour for a rock specimen during compression.

It is important to realise that the peak stress σc, the uniaxial compressive strength,
is not an intrinsic material property, i.e., it depends on both the loading conditions
and the geometry of the specimen. An increased ratio between width and height of
the rock specimen will lead to an increase in compressive strength as well as a more
ductile failure process. A similar effect can be seen if a rock specimen is subjected
to a confining pressure during a compression test, see Figure 4.9.
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Figure 4.9: Representation of how the width/height ratio of the rock specimen
affects the compressive strength during uniaxial compression tests.

Another important aspect of rock behaviour is that rocks in general are porous to
some extent, and the pores are typically filled with fluids or gas under pressure. The
pore fluid can influence failure of a rock in mainly two ways; either by mechanical
effects from the pore pressure, or due to chemical interaction between the rock and
the fluid. Work on the effects of chemical interaction between rock and pore fluid
can be found in, i.e., [15]. The mechanical effect of pore pressure acting outward
from the pore space and therefore acting like tensile stress on the rock and may
lead to a reduced compressive strength of the rock specimen. This behaviour is
supported experimentally for most rocks, that is to say, the principle of effective
stress presented in equation (4.2) also hold for rocks.

Failure in rock

In rock mechanics, failure generally refers to when a rock suffers irreversible damage,
permanently affecting its load-bearing ability. A number of constitutive models have
been introduced to predict the failure conditions of rocks, i.e., Mohr-Coulomb and
Hoek and Brown. Although existing failure criteria are widely used and capable
of predicting the overall strength values and behaviour of rock during external
loading, these criteria may not be able to satisfactorily describe the failure process
in detail. As for most rock, failure is essentially a process of crack initiation and
propagation, the use of fracture mechanics has therefore become a common tool
to study the detailed failure process in rock. As mentioned previously, the loading
condition and geometry of a rock specimen will influence both the strength and
failure process of a rock subjected to external loads. A rock specimen subjected
to unconfined compression will typically display an elastic behaviour until abrupt
failure takes place. The failure process in rock during unconfined compression
does generally take place through the formation of brittle fractures in the loading
direction, illustrated in Figure 4.10a.
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a) b) c)

Figure 4.10: Representation of characteristic fracture processes for rock speci-
mens subjected to external loading. a) Rock specimen subjected
to uniaxial compression b) Shear fracture in a rock specimen with
a moderate confining pressure. c) Network of shear fractures dur-
ing ductile failure in a rock specimen with an increased confining
pressure.

If the confining pressure is increased during compression, the failure process will
change. For moderate confining pressures, failure will take place through the forma-
tion of shear fractures, see Figure 4.10b). With further increased confining pressure
the failure process will change from brittle to ductile, where a network of shear
fractures will be formed in the specimen, see Figure 4.10c).

4.2.2 Griffith theory for brittle fractures

Modern fracture mechanics stem from Griffith’s theory for brittle fractures, which
states that propagation of fractures is the source for failure of loaded brittle ma-
terials, and provides a description for formation of discontinuities in an unbroken
structure. Griffith’s work was first presented in 1921, and was motivated by the
contradiction that the theoretical stress value needed to break the atomic bond in
glass was approximately 100 times greater than the stress needed to fracture bulk
glass. Griffith stipulated that the difference in theoretical and experimental values
was due to the presence of sub-microscopic flaws or micro-cracks in the material.
Griffith showed that the product of the square root of the length of the flaw and the
stress at fracture was close to constant. However, this relation poses a mathematical
difficulty, for a perfectly sharp crack the stresses approach infinity at the crack tip.
To overcome this problem, Griffith developed a thermodynamic approach and found
that for a perfect elastic material failure occurs when the surface energy reaches a
peak value at a critical crack length, after which the surface energy decrees as the
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crack length increases, i.e.

σf
√
a =

√
2Eγ

π
(4.5)

where σf is the applied stress at failure, a half the length of the crack, E the Young’s
modulus and γ the surface energy. Griffith’s work led to the introduction of the
term strain energy release rate, G, which describes the rate at which the energy is
absorbed during crack growth. In other terms, a crack will grow when the energy
released by the body per unit fracture area is greater than or equal to the increase
in surface energy

G ≥ 2γ (4.6)

Moreover, Irwin, [24], and Orowan, [25], independently discovered that, for more
ductile materials, the released strain energy could not be absorbed by the formation
of new fracture surfaces. Instead, they suggested that the released strain energy
to a large extent was dissipated due to plastic flow in a zone near the crack tip,
which in rock may consist of crushed grains and micro-cracking. To accommodate
for this plastic zone, they suggested that catastrophic fractures occur when the
strain energy release rate reaches a critical value, Gc. For brittle materials, the
critical strain energy release rate, Gc, is generally considered a material parameter
even though in practice it depends on loading conditions and the geometry of the
crack. Measured values of the critical energy release rate Gc for various rocks and
minerals have been compiled by [26]. By choosing a sufficiently small crack size
and with known value of Gc for a given material, it is possible to establish a safe
level of stress, σf . For a simple case of a thin plate with a crack perpendicular to
the load, see Figure 4.11 and assuming plane stress, it is possible to determine the
peak stress from

σf =

√
EGc
πa

(4.7)

2a

σ

σ

Figure 4.11: A thin rectangular plate with a crack of length 2a perpendicular to
the load.

Note that the Griffith theory can be further generalized to consider any cracked
body, by using an energy balance between the decrease in potential energy Π at an
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infinitely small increase in crack area A, i.e

G = −∂Π

∂A
= − ∂

∂A
(Ue + Up) (4.8)

where Up and Ue are the potential and elastic energy of the load respectively.
Moreover, fractures can be decomposed into three different fracture modes. Where
Mode I represents fractures in pure tension, Mode II represents in-plane shear
fractures and Mode III anti-plane shear fractures, see Figure 4.12. Similarly, the
strain energy release rate can be decomposed into three modes, as mathcalG =
mathcalGI +mathcalGII +mathcalGIII .

a) b) c)

Figure 4.12: a) The different fracture modes. a) Mode I fracture. b) Mode II
fracture. c) Mode III fracture.

4.3 FAILURE CRITERIA

Numerical simulations can be of great use when analysing the behaviour of geoma-
terials for complex construction projects, and a number of sophisticated constitutive
models have been developed in the science community. However, engineers work-
ing with analysis of geomaterials, often prefer less complex constitutive models
when preforming analysis. So, even though there exists a number of sophisticated
constitutive models to model both soil and rock behaviour, it is important to un-
derstand the pros and cons of the models widely used by practising engineers. This
section will present two of the most basic criteria used to model failure in soils and
rock, namely the Mohr-Coulomb criterion and Drucker-Prager criterion.

4.3.1 Mohr-Coulomb criterion

The failure criterion often referred to as the Mohr-Coulomb failure criterion is the
most popular failure criterion in soil mechanics and was first presented in 1773
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by Charles-Augustin de Coulomb, and was the first criterion to account for the
hydrostatic stress. According to the Mohr-Coulomb criterion the shear strength
increases with increasing compressive stress,

|τf | = c′ − σ′ tanφ′ (4.9)

where τf is the shear stress on the failure plane, c′ the material cohesion, σ′ the
normal effective stress on the failure surface and φ′ the angle of internal friction. In
Figure 4.13 the Mohr-Coulomb criterion is illustrated employing the Mohr circle.
With Figure 4.13 as reference the Mohr-Coulomb criterion is derived as

σ′1 − σ′3
2

= AB +BF (4.10)

(σ′3, 0)(σ′1, 0)
σ

O

τ

c′

φ′

τf
F

G

B

A

Figure 4.13: The Mohr-Coulomb criterion and Mohr’s circle.

which can be rewritten as,

σ′1 − σ′3
2

= OA sinφ′ + c′ cosφ′ (4.11)

Inserting that OA = −1
2(σ′1 + σ′3) into (4.11) one obtains,

− σ′1 − σ′3
2

=
σ′1 + σ′3

2
sinφ′ − c′ cosφ′ (4.12)

where σ′1 and σ′3 are the major and minor principal effective stress respectively. It is
also clear from (4.12) that the Mohr-Coulomb criterion is independent of the effects
of the intermediate principal effective stress, σ′2 [27]. The expression in (4.12) can
be projected on the deviator- or π-plane where it takes the form of an irregular
hexagon illustrated in Figure 4.14.

The Mohr-Coulomb criterion states that the yield strength in compression is higher
than the yield strength in tension. The Mohr-Coulomb criterion is expressed in
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σ′1 σ′2

σ′3

Figure 4.14: The Mohr-Coulomb criterion on the deviator plane.

terms of σ′1 and σ′3, and is, as mentioned, not including σ′2. It is therefore incon-
venient to express the Mohr-Coulomb criterion with the components of the stress
tensor and consequently it becomes difficult to describe the criterion with the stress
invariants (I1, I2, I3). The Mohr-Coulomb yield criterion is instead commonly de-
scribed using the first invariant of the stress tensor I1, the second invariant of the
deviatoric stress tensor J2 and the Lode angle θ. The representation of the invari-
ants is described using the full stress tensor, σij . For geo-materials the stress tensor
is often substituted with the effective stress tensor, σ′ij . For the special case where
no pore water pressure is present σij = σ′ij . The deviator stress tensor is defined as

sij = σij −
1

3
σkkδij (4.13)

and the first stress invariant is given from

I1 = σii (4.14)

The second invariant of the deviator stress tensor is calculated as

J2 =
1

2
sijsji (4.15)

Finally the Lode angle, θ is defined as

θ = −1
3 sin−1

(
− 3
√

3

2

J3

J
3/2
2

)
(4.16)

where −π/6 ≤ θ ≤ π/6 and J3 = 1
3(sijsjkski). This leads to the convectional form

of Mohr-Coulomb criterion in a three-dimensional stress space as, [27]

f(I1, J2, θ) = I1 sinφ′ +
√
J2 cos θ −

√
J2

3
sinφ′ sin θ − c′ cosφ′ = 0 (4.17)
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One setback to the Mohr-Coulomb criterion is that the shape of the yield surface
leads to numerical difficulties when treating the plastic flow at corners of the yield
surface. Another issue with the Mohr-Coulomb criterion is the conic shape of the
yield surface opening in the direction of the hydrostatic axis, see Figure 4.15. This
leads to that the Mohr-Coulomb criterion will not describe soil behaviour accurately
above a certain limit pressure. The opening in the direction of the hydrostatic axis
implies that the material can bear infinite pure hydrostatic compressions without
forming any plastic deformations [28].

−σ1

−σ2

−σ3

Figure 4.15: Projection of the Mohr-Coulomb criterion in the principal stress
space.

4.3.2 Drucker-Prager criterion

The Drucker-Prager criterion was suggested by Drucker and Prager in 1952 and
it can be seen a generalisation of the Mohr-Coulomb criterion to account for the
effects of all principal stresses. This generalisation is formed using the first invariant
of the stress tensor, I1, and the second invariant of the deviatoric stress tensor, J2

as
f(I1, J2) =

√
J2 − αI1 − k = 0 (4.18)

The parameters α and k are positive material parameters that can be determined
from the slope and interception of the yield surface plotted in the I1 −

√
J2 plane,

illustrated in Figure 4.16. The values of k and α can also be expressed in terms
of cohesion, c′, and internal friction, φ′. For the conventional triaxial tests, i.e.,
where σ2 = σ3, the parameters k and α can be determined either by matching to
the compressive meridian of the Mohr-Coulomb criterion by

α =
2√
3

sinφ′

(3− sinφ′)
(4.19)
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Figure 4.16: The Ducker-Prager criterion in the meridian plane.

k =
6√
3

c′ cosφ′

(3− sinφ′)
(4.20)

or matching the tensile meridian of the Mohr-Coulomb criterion using

α =
2√
3

sinφ′

(3 + sinφ′)
(4.21)

k =
6√
3

c′ cosφ′

(3 + sinφ′)
(4.22)

The matching of the Drucker-Prager criterion to either the compressive or the tensile
meridian of the Mohr-Coulomb criterion is illustrated in Figure 4.17. From Figure

σ1 σ2

σ3

compressive meridian

tensile meridian

Mohr-Coulomb criterion.

Drucker-Prager criterion,
compressive meridian.

Drucker-Prager criterion,
tensile meridian.

Figure 4.17: Projection of the Drucker-Prager criterion matched to the Mohr-
Coulomb criterion on the deviator plane.

4.17 it can be seen that the Drucker-Prager criterion takes the form of a circle when
viewed in the deviator plane. This property of the Drucker-Prager criterion makes
it more stable in numerical calculations than the Mohr-Coulomb criterion. One
drawback that the Ducker-Prager criterion has in common with the Mohr-Coulomb
criterion is the conic shape of the yield surface that is open in the direction of
the hydrostatic axis, see Figure 4.18 [27]. This leads to that the models allow
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for unlimited hydrostatic stresses without any plastic deformations taking place.
However, it is possible to remedy this limitation by adding a second yield surface
often referred to as a cap, to the model. Lastly, it is well worth noting that, even

−σ1

−σ2

−σ3

Figure 4.18: The Drucker-Prager criterion matched to the compressive meridian
of the Mohr-Coulomb criterion in the principal stress space.

though the Drucker-Prager criterion is an approximation of the Mohr-Coulomb
criterion that presents some benefits regarding numerical stability, it is in general
not regarded to be a good fit for simulation of soil-behaviour. The disadvantages
are well known in the science community and it is only for very homogeneous stress
states that the model gives acceptable results.





5 Numerical modelling
of geomaterials

This chapter will give an overview of the theories and numerical methods used
to simulate soil and rock behaviour in this work. The chapter starts with a brief
description of linear and non-linear elasticity followed by a presentation of the theory
of plasticity used to simulate soil behaviour in Paper B. The chapter continues with
an outline of the phase-field fracture model used to simulate brittle fractures in rock
presented in Paper C and Paper D. The chapter is concluded with a description
of the numerical methods used to conduct the simulations in this work. A more
detailed description on the numerical methods can be found in the appended papers
presented in Part II of this work.

5.1 MODELLING OF SOIL BEHAVIOUR

This section will present the basic theories needed to model the complex behaviour
of soil under loading. As soils differ to other construction materials, such as concrete
or steel which exhibit linear stress-strain behaviour up to a well-defined stress limit,
it is often necessary to model the behaviour of soil using non-linear elasticity or
plasticity. We will start this section by giving a definition of the concept of strain.
The section will continue with a brief outline of linear elasticity, as, even though
it is of limited use for modelling of soil response, it is a natural starting point
of constitutive modelling. As mentioned in Chapter 4 a number of constitutive
models have been developed to model soil behaviour. Even though the models
vary in complexity, most models developed for simulation of soil behaviour rely
on the theory of plasticity. Therefore the section will be concluded with a general
introduction to plasticity.
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5.1.1 Strain

Consider a point A in an undeformed body that can be described by the coordinates
(x1, x2, x3) see Figure 5.1. If the body is deformed, the point A will be moved to
A∗ and described by the coordinates (x∗1, x

∗
2, x
∗
3), where

x∗i = xi + ui (5.1)

u1, u2 and u3 describe the displacements in the x1, x2 and x3 directions over time.
The displacements are often written as

ui = ui(xi, t) (5.2)

Now consider an adjacent point B in the body as shown in Figure 5.1. Let the point
be described by the coordinates (xi+dxi), where dxi denotes the distance in the xi
direction between point A and B prior to deformation. Point B will in conformity
with point A be moved to B∗ after a deformation of the body. The point B∗ will
be described by the coordinates (x∗1 + dx∗1, x

∗
2 + dx∗2, x

∗
3 + dx∗3), where

x∗i + dx∗i = xi + dxi + ui + dui

in which,
dui = ui,jdxj (5.3)

where ui,j is the displacement gradient, defined as

ui,j =
∂ui
∂xj

(5.4)

The distance from point A to point B prior to deformation, is given by dxi, see
Figure 5.1. In the following the length of the vector from A to B will be denoted
|−−→AB|.

undeformed body deformed body

xi + dxi

x∗i = xi + ui(xi, t)

x∗i + dx∗i = xi + dxi + ui(xi + dxi, t)

dxi
dx∗i

A∗

A

B∗

B

xi

Figure 5.1: Illustration of displacements of neighboring material points.
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Due to the deformation of the body, the distance dxi is changed according to Fig-
ure 5.1. The distance in the xi direction between A∗ and B∗ in the deformed
configuration is obtained from (x∗i + dx∗i ) − x∗i which, using equation (5.1)-(5.3),
can be written as:

dx∗i = dxi + dui = (δij + ui,j)dxj (5.5)

where δij is the Kronecker delta. Using the same notation as in the undeformed
configuration, the length of the vector from A∗ to B∗ is denoted |−−−→A∗B∗|, giving that

|−−−→A∗B∗|2 = (δki + uk,i)(δkj + uk,j)dxidxj (5.6)

Using that |−−→AB|2 = dxjdxj and that dxjdxj = dxidxjδij together with equa-
tion (5.6) the difference between |−−−→A∗B∗|2 and |−−→AB|2 can be written as

|−−−→A∗B∗|2 − |−−→AB|2 = (ui,j + uj,i + uk,iuk,j)dxidxj (5.7)

This equation may be rewritten as

|−−−→A∗B∗|2 − |−−→AB|2 = 2dxiEijdxj (5.8)

where the Green strain tensor, Eij is given by

Eij = 1
2(ui,j + uj,i + uk,iuk,j) (5.9)

The Green strain tensor is a second-order symmetric tensor and it was first in-
troduced by Green in 1841. For the work presented in this dissertation, small
strains are assumed. Hence, the small displacement gradient will be considered,
consequently the quadratic term of equation (5.9) is ignored. This simplification
can be expressed by replacing Eij in equation (5.8) with the small strain tensor, εij
given by

εij = 1
2(ui,j + uj,i) (5.10)

5.1.2 Linear elasticity

Experimental observations have shown that many materials behave linear elastically
up to a certain stress level. For isotropic materials exhibiting linear elastic behaviour
the relation between stresses and strains can be defined by two material properties,
namely Young’s modulus, also referred to as elasticity modulus, and Poisson’s ratio,
denoted E and ν respectively.

With the help of these properties, a relation between the stress and strain tensor
can be formed as a fourth-order elasticity tensor Dijkl called the stiffness tensor.
Though it would be possible to form the stiffness tensor using Young’s modulus
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and Poisson’s ratio, it can be useful to express the stress-strain relation using the
shear modulus, µ, and the bulk modulus, K given by

µ =
E

2(1 + ν)
(5.11)

K =
E

3(1− 2ν)
(5.12)

Using these quantities a stress-strain relation can be formulated as

σij = 3K
(1

3
εkkδij

)
+ 2µ

(
εij −

1

3
εkkδij

)
(5.13)

or in a much useful manner using that εij = 1
2(δikδjl + δilδjk)εkl

σij = 2µ
[1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

]
εkl (5.14)

From this expression it is evident that the first part on the right-hand side can be
recognised as the stiffness tensor, that is

Dijkl = 2µ
[1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

]
(5.15)

Using Dijkl, the constitutive relation between stresses and strains for an isotropic
linear elastic material can then be written as

σij = Dijklεkl, (5.16)

which is recognized as Hooke’s generalised law for isotropic elasticity and was in a
uniaxial form suggested by Robert Hooke in 1676. As Dijkl is an isotropic fourth-
order tensor and σij and εij are second order tensors, it is possible to invert equa-
tion (5.16) to determine the strains as

εij = Cijklσkl, (5.17)

where Cijkl is called the elastic isotropic flexibility tensor [28], given by.

Cijkl =
1

2µ

[1

2
(δikδjl + δilδjk)−

ν

1 + ν
δijδkl

]
. (5.18)

5.1.3 Theory of plasticity

Linear elasticity is in most cases too crude to model the essential features of soil
behaviour, as they show irreversible, or plastic, deformations at relatively small
stresses. In general, if the stress state exceeds the yield strength of the material,
plastic strains, εpij , will develop. For soils the yield strength is dependent on the
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Figure 5.2: Yield strength of a friction material viewed in the meridian plane.

hydrostatic pressure, as illustrated in Figure 5.2. One characteristic behaviour of
materials that suffer irreversible deformations, εpij , is that the reloading path differs
from the original loading path, see Figure 5.3. This implies that the material
behaviour is no longer only determined from current stress state but rather said to
be history dependent, i.e., it can only be determined by an integration of the load
history [28]. This is illustrated in Figure 5.3, where it is obvious that the strains
are equal at different stress levels along the dotted line.

τij/σ0

-εij

εpij εeij

Figure 5.3: Load-reload cycle.

To capture the behaviour illustrated in Figure 5.3, the total strain εij is divided
into two parts, where the irreversible or plastic strains are denoted as, εpij and εeij
represents the elastic strains,

εij = εeij + εpij . (5.19)

Due to the dependence on the load history, constitutive models for plasticity are
written in an incremental from, with their corresponding incremental plastic strains
or plastic strain rates, denoted ε̇pij . However, ε̇pij , is used instead of dεpij plainly to
simplify the notation. For elastic-ideal plastic materials the plastic part of ε̇ij can
be determined from

ε̇pij = β̇sij β̇ ≥ 0 (5.20)
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where sij represents the deviatoric stress tensor. The constitutive relation for ε̇pij is
called the flow rule. The original flow rule assumes that the material is incompress-
ible under plastic flow or yielding, i.e., that the volumetric strain tensor εpii/3 is
equal to zero. This is, however, generally not true for geological materials [27]. As
this work deals with friction materials, a constitutive expression suitable for geo-
materials will be used to illustrate the flow rule. For this case the Drucker-Prager
yield criterion has been used as it is relatively simple compared to other constitutive
models. According to equation (4.17),

f(σij) =
√
J2 − αI1 − k (5.21)

where k and α are presented in equation (4.19)-(4.20). Differentiating equation (5.21),
it becomes

∂f

∂σij
= −αδij +

sij

2
√
J2

(5.22)

Combining equation (5.22) with equation (5.20), an expression to determine the
direction of the plastic strains can be obtained:

ε̇pij = λ̇
∂f

∂σij
λ̇ ≥ 0 (5.23)

where λ̇ is called the so called plastic multiplier, which regulates the magnitude of
the plastic strains. For the Drucker-Prager criterion the plastic multiplier can be
determined from

λ̇ =
( sij
αδij

+ 2
√
J2

)
β̇. (5.24)

Until the stress state reaches the yield surface, that is, while f < 0, the quantity
∂f
∂σij

can be seen as the normal to the yield surface f = 0, illustrated in Figure 5.4.

σ1

σ2 σ3

ε̇pij = λ̇ ∂f
∂σij

Figure 5.4: Normality of the incremental plastic strains.

As the normal to the yield surface is given from equation (5.24), the yield surface f
can be seen as a potential function for the incremental plastic strains. Using more
general terms the flow rule can be written as

ε̇pij = λ̇
∂g

∂σij
λ̇ ≥ 0 (5.25)
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where g represents a non-specific potential function, that can take other forms than
the yield surface f . The potential function, g, is in general determined with the
same quantities as the yield surface.

g(σij) = 0 (5.26)

If g = f the flow rule is said to be associated. The use of associated flow rule has
shown good numerical results compared to material testing of metals and non-
friction materials. However, for friction materials, experimental and numerical
results have proven to diverge when the associated flow rule has been used, [28].
Therefore, a potential function, not equal to the yield surface, i.e., g 6= f , is used
in most constitutive models for geo-materials. The total incremental strain can be
expressed using its elastic and plastic parts,

ε̇kl = ε̇ekl + ε̇pkl (5.27)

Inserting the incremental equation (5.27) into equation (5.16) we get,

σ̇ij = Dijkl(ε̇kl − ε̇pkl). (5.28)

Inserting the flow rule from equation (5.25) the expression changes into

σ̇ij = Dijklε̇kl − λ̇Dijst
∂g

∂σst
. (5.29)

To solve for the magnitude of the plastic strains, λ̇, we utilise that the gradient
∂g/∂σij describes the direction of the plastic strains. As the stress state per defin-
ition will be located on the yield surface, the plastic loading will always be located
on the yield surface [28], that is f(σij = 0). The variation of the stress state so that
it remains on the yield surface during plastic loading is governed by the so-called
consistency relation

∂f

∂σij
σ̇ij +

∂f

∂Kα
K̇α = 0 (5.30)

where, Kα describes a hardening parameter which in turn is dependent on the in-
ternal variable κα. It is important to acknowledge that the relation between Kα

and κα is established for the specific material properties of interest. However, it is
possible to express this in a more general manner by introducing the evolution func-
tions kα. This is done by first inserting the internal variable into equation (5.30),
obtaining,

∂f

∂σij
σ̇ij +

∂f

∂Kα

∂Kα

∂κβ
κ̇β = 0. (5.31)

Introducing kα as variables describing how κα evolves with the plastic deformation,
the evolution laws can be established accordingly,

κ̇α = λ̇kα(σij ,Kβ) (5.32)
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That λ̇ is a part of the internal variable is not unexpected as it was earlier men-
tioned that λ̇ controls the magnitude of ε̇pij . Inserted in the consistency relation,
equation (5.30) we obtain,

∂f

∂σij
σ̇ij + λ̇

∂f

∂Kα

∂Kα

∂κβ
kβ = 0 (5.33)

Multiplying equation (5.29) with ∂f/∂σij and using equation (5.33) and (5.25) it
is possible to form an expression to determine λ̇, as

λ̇ =
1

A

∂f

∂σij
Dijklε̇kl; λ̇ ≥ 0 (5.34)

where A is defined by

A = H +
∂f

∂σij
Dijkl

∂g

∂σkl
A > 0 (5.35)

H, represents the plastic modulus, which governs hardening behaviour. For non-
hardening plasticity H = 0. Inserting the expression for λ̇ into the flow rule equa-
tion (5.25), it turns out that the plastic part of the strain tensor can be established
when the total strains are known

ε̇pij =
1

A

( ∂f

∂σkl
Dklmnε̇mn

) ∂g

∂σij
(5.36)

This implies that, if the total strain rates are known, the total stress rates can be
determined from

σ̇ij = Dep
ijklε̇kl (5.37)

The elasto-plastic stiffness tensor, Dep
ijkl, which determines the current tangential

stiffness of the material is defined as

Dep
ijkl = Dijkl −

1

A
Dijst

∂g

∂σst

∂f

∂σmn
Dmnkl (5.38)

The expression in equation (5.37) is the sought general form of the stress-strain
relation. It was first established by Hill in 1958 for associated plasticity and later
in 1966 by Mroz for general non-associated plasticity [28]. There are a few prop-
erties of the elasto-plastic stiffness tensor worth emphasising. Foremost, it can be
observed that Dep

ijkl does not depend on neither σ̇ij nor ε̇ij which results in that
equation (5.37) is incrementally linear. Furthermore Dep

ijkl shows similar symmetric
properties as the stiffness tensor from equation (5.15), that is

Dep
ijkl = Dep

jikl Dep
ijkl = Dep

ijlk

For associated plasticity it also yields that Dep
ijkl = Dep

klij , which does not hold for
non-associated plasticity, i.e. Dep

ijkl 6= Dep
klij . For numerical calculations using non-

linear FEM or IGA it is of importance that equation (5.37) can be written on matrix
form [28],

σ̇̇σ̇σ = Depε̇̇ε̇ε (5.39)
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where, in compliance to previously discussed symmetric properties, it may be no-
ticed that for associated plasticity Dep = DepT whereas for non-associated plasticity
Dep 6= DepT [28]. To contain the quadratic convergence of the Newton-Raphson
iterative solver, the stiffness matrix must account for the algorithmic stress update.
The algorithmic tangent stiffness matrix, Dats, first introduced by [29] and [30] is
presented in paper B.

5.2 PHASE-FIELD APPROACH FOR
BRITTLE FRACTURES IN ROCK

The ability to predict rock behaviour using numerical models is pivotal to solve
many rock-engineering problems. Numerical modelling can also be used to improve
our understanding of the complicated failure process in rock. With models that
better capture the fundamental failure mechanisms observed in laboratory, our
ability to generate reliable large-scale models improves. This section presents an
alternative method to simulate propagation and nucleation of fractures in rock
which uses the variational formulation for quasi-static brittle fracture mechanics
first introduced by Francfort and Margio [31]. Early work by Bourdin [32] first
introduced a numerical implementation of the regularised approximation of the
variational formulation. Following the work by Miehe et al. [33], which gave an
interpretation of the phase-field parameter in context of a gradient model, the phase-
field fracture model has extended in a number of directions, including dynamic
fracture [1–3], coupled thermo-mechanical-driven fracture [4], and high-order phase-
field approaches [5], to name a few. However, these contributions assume that the
critical energy release rate for different fracture modes are equal, which is not the
case for rocks and rock like materials, see, e.g. [6]. In rock-like materials, the critical
energy release rate for Mode I and Mode II can differ significantly. In [34] Zhang
et al. suggest a model that distinguish between the critical release rates for Mode I
and Mode II cracks. However, porous rocks, such as sandstone and volcanic rock,
often display fractures due to compressive stresses, see e.g., [15], which is not taken
into account in [34].

This section describes the fundamental theory of phase-field fracture models, where
a fracture is indicated by a scalar order parameter coupled to the material properties
in order to model the change in stiffness between undamaged and broken material.
Undamaged material is indicated by that the order parameter has the value one and
the material properties remain unaltered, whereas broken material is characterised
by the value zero of the order parameter and the stiffness of the material is reduced
accordingly. The section continues with a presentation of a modified phase-field
fracture model that distinguishes between fractures in Mode I and Mode II as
well as fractures driven by compressive stress. The suggested model is capable
of capturing the experimental results of rock specimen under plane-strain uniaxial



44 5 Numerical modelling of geomaterials

conditions subjected to compressive loading, see Paper C and Paper D.

5.2.1 Griffith’s theory of brittle failure

As a starting point to the phase-field fracture model, a brief recapitulation of the
Griffith energy-based failure criterion is given. The criterion is based on linear
elastic fracture mechanics and it is set forth that the elastic energy released during
fracture propagation is balanced by newly created surface energy. Consider an
arbitrary body Ω ⊂ Rn, n ∈ {1, 2, 3}, with the external boundary ∂Ω and internal
discontinuity boundary Γ, see Figure 5.5a. Griffith’s theory of brittle failure states
that the total energy of the body is given by

Ψ = Ψe + Ψd −Ψext (5.40)

where Ψe denotes the elastic energy of the undamaged body Ω, Ψd the energy needed
for evolution of the internal discontinuity Γ(t) and Ψext, the potential energy of the
external forces. If we let εij denote the infinitesimal strain tensor, then for the case
of linear elasticity, the elastic energy of a body Ω is given by

Ψe =

∫
Ω
ψ0
e(εij) dV (5.41)

where ψ0
e is the undamaged elastic energy density, i.e.,

ψ0
e(εij) =

1

2
λεiiεjj + µεijεji (5.42)

where λ and µ are the Lamé constants. Furthermore, the energy needed for a crack
to propagate can be obtained from

Ψd =

∫
Γ
Gc dA (5.43)

where Gc is the critical strain energy release rate presented in Section 4.2.2. Lastly,
the potential energy of the external forces Ψext = 0 if no external forces are acting
on the body.

5.2.2 Phase-field fracture approximation

To avoid the problems associated with numerically tracking the evolution of an
internal discontinuity boundary Γ, a phase-field parameter, d(x, t) ∈ [0, 1] is
used to approximate a fracture surface. The material is undamaged as long as the
phase-field parameter d = 1 and a fracture is represented by d = 0, see Figure 5.5b.
The foundation of the phase-field fracture model is the approximation of the total
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Figure 5.5: a) Representation of a solid body Ω with internal discontinuity bound-
ary Γ. b) Approximation of internal discontinuity boundaries by the
phase-field, d(x, t).

energy of a fractured body, equation (5.40). A number of different methods have
been suggested to approximate the fracture energy. One widely used formulation
was suggested by Miehe et al. [35]. The formulation is thermodynamically consistent
and can to some extent be seen as an alternation to the framework of Francfort and
Margio [31] and Bourdin [32], where the fracture energy is approximated as

Ψd =

∫
Γ
Gd dA ≈

∫
Ω
ψd dV (5.44)

where

ψd = Gc
[(d− 1)2

4`0
+ `0

∂d

∂xi

∂d

∂xi

]
(5.45)

in which `0 is a model parameter that controls the width of the approximation
of the fracture zone, see Figure 5.5. Borden [36] and Kuhn [37] suggest that the
regularised length, `0, can be regarded as a material parameter, determined as
`0 = 27EGc

512σ2
t
, where E is the Young’s modulus, σt the tensile strength and Gc the

critical energy release rate. In [38], Bourdin et al. noticed that the early phase-field
approximations gave unrealistic crack patterns during compression. To remedy
this problem, Miehe et al. [35] suggested a decomposition of the elastic energy
ψ0
e(u, d) = ψ(ε)+

e + ψ(ε)−e . To model the decrease of material stiffness as the
fracture propagates, the elastic energy density is defined as

ψ0
e(u, d) = [(1− η)d2 + η]ψ+

e + ψ−e (5.46)

where η is a correction factor to ensure numerical stability, set to approximately
1e−12. The elastic energy densities are given from:

ψ+
e (ε) =

1

2
λ〈εii〉2 + µε+

ijε
+
ji (5.47)

ψ−e (ε) =
1

2
λ[εii − 〈εii〉]2 + µε−ijε

−
ji (5.48)
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in which ε+ and ε− are the positive and negative components of the strain tensor,
i.e.,

ε+ = PΛ+PT

(5.49)

ε− = PΛ−PT

with

Λ+ = diag(〈λ1〉, 〈λ2〉, 〈λ3〉) Λ− = Λ−Λ+ (5.50)

and where P consists of the orthonormal eigenvectors of ε and Λ = diag(λ1, λ2, λ3)
is a diagonal matrix of principal strains, with the Macaulay brackets defined as

〈x〉 =

{
x x ≥ 0
0 x < 0

(5.51)

The stress tensor can now be calculated as the derivative of the elastic strain energy
density, given in equation (5.46), as

σij = ∂εψ
0
e(ε, d) = [(1− η)d2 + η]

[
∂εψ

+
e (ε)

]
+ ∂εψ

−
e (ε) (5.52)

By adding the expressions according to equation (5.45) and equation (5.46) the
total strain energy density of the phase-field approximation can be formulated as,

ψ(ε, d) = [(1− η)d2 + η]ψ+
e + ψ−e + Gc

[
(d− 1)2

4`0
+ `0|∇d|2

]
(5.53)

Furthermore, the evolution of the phase-field can be determined from

ḋ = −M δψ

δd
= −M

[
2d[1− η]ψ+

e +
Gc
2`0

[d− 1] + 2Gc`0∆d

]
. (5.54)

where the constraint ḋ δψδd ≥ 0 is introduced to enforce growth of the fracture work Ψd

in equation (5.44). The kinetic coefficient or mobility parameterM is a non-negative
scalar function M = M(ε, d,∇d, ḋ) introduced to control the crack velocity. The
most simple assumption, M = constant lead to the standard Ginzburg-Landau
evolution equation, see [37]. Furthermore, the variational derivative of ψ is given
by

δψ

δd
=
∂ψ

∂d
− div

( ∂ψ

∂∇d
)

with div
( ∂ψ

∂∇d
)

= 2Gc`0∆d (5.55)

The split in the elastic strain energy, presented here and suggested by [35], prevents
propagation fractures in compression. However, the split of the strain energy leads
to a strongly non-linear stress-strain relation, equation (5.52), increasing the com-
putational cost. Moreover, equation (5.54) implies that the critical energy release
rates in Mode I and Mode II cracks are equal, which is not the case for most rock.
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5.2.3 Modified phase-field approximation

A number of different approaches have been proposed to overcome the limitations of
the phase-field fracture models when it comes to simulating materials with different
values of critical energy release rates for fractures for Mode I and Mode II. In [39],
Choo et al. present an alternative, in which the regularisation length `0 and the
fracture energy density Gc are chosen such that the peak stress under uni-axial
loading matches to the Mohr-Coulomb yield criterion. However, the work presented
in this thesis, this limitation of the phase-field fracture is approached with a method
inspired by [34] and a modified version of the phase-field model that accommodates
for the characteristic behaviours of porous rock is proposed. The goal with the
proposed model is to:

• capture the evolution of fractures in porous rock.

• control the critical energy release rates for Mode I and Mode II fractures.

• allow for fractures driven by compressive stress.

To allow for fractures in both compression and tension, a modification of the elastic
strain energy density is introduced by redefining equation (5.46) into

ψe(u, d) = [(1− η)d2 + η]H (5.56)

where H = H+ +H− is a reformulation of the elastic strain energy density intro-
duced to control the evolution of cracks in both tension and compression, which will
be discussed further shortly. First, we focus on how to separate between Mode I
and Mode II fractures as the critical energy release rates for rocks, in general are
not the same for shear and tensile cracks. In [40], Ambati et al. give an overview
of different phase-field fracture formulations, including the approaches proposed
by [35, 37, 41] among others. Where [41] suggest that the elastic strain energy
should be formulated using a deviatoric and volumetric split,

ψ+
e (ε) =

1

2
Kn〈εii〉2 + µ εdevij εdevji (5.57)

ψ−e (ε) =
1

2
Kn[εii − 〈εii〉]2 (5.58)

with Kn = λ+ 2µ
n and εdevij the deviatoric strain given as εdevij = εij − 1

nεkkδij with
n = 2, 3 representing the dimension of the problem. A benefit with this approach
is that it presents a pure split between the volumetric and deviatoric strains, but
the formulation leads to cracking in regions where all principal strains are negative,
which can have an effect on the crack path. To demonstrate the effects of the
different models, 5.2.4, presents a numerical example of single edge notch shear
test, where the results presented in Figure 5.7, gives an example of how the crack
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path is effected. To overcome this problem, whilst still having a split between the
volumetric and deviatoric parts of the strain tensor, a modified formulation of the
strain energy terms for the evolution of the phase-field is suggested, defined as

H+(ε) =

[
1

2
K〈εii〉2 + µ εd+

ij ε
d+
ji

]
H(εii) (5.59)

H−(ε) =

[
1

2
K[εii − 〈εii〉]2 + µ εd−ij ε

d−
ji

]
[1−H(εii)] (5.60)

with the tensors εd+
ij = ε+

ij − 1
nεkkδij and ε

d−
ij = ε−ij − 1

nεkkδij and where H(εii) the
Heaviside function. Next, a new mobility parameter is introduced, M̃ = MGc by
rearranging equation (5.54) into,

2d[1− η]
H
Gc

+
1

2`0
[d− 1] + 2`0∆d+

ḋ

M̃
= 0, (5.61)

where the ratio HGc controls the evolution of the crack. Porous rocks, e.g., sandstone
or volcanic rock, often display fractures during compressive stress, [42]. To overcome
this problem, a change to equation (5.61) is proposed, where a modification to the
ratio HGc enables mixed mode crack propagation under both tensile and compressive
stress,

H
Gc

=
H+
I

G+
cI

+
H+
II

G+
cII

+
H−I
G−cI

+
H−II
G−cII

(5.62)

with
H+
I =

1

2
K〈εii〉2H(εii)

H+
II = µ εd+

ij ε
d+
ji H(εii)

H−I =
1

2
K[εii − 〈εii〉]2[1−H(εii)]

H−II = µ εd−ij ε
d−
ji [1−H(εii)].

(5.63)

where the parameters G+
cI , G+

cII are the critical energy release rates for Mode I and
Mode II during tensile stresses and where G−cI and G−cII represent the critical energy
release rates for compressive stresses. Besides the modification of the ratio H

Gc a
non-constant mobility parameter M̃(ε) = m̃1 + m̃2H(tr[ε]) is proposed to give
further control of the evolution.

The performance of the proposed modified phase-field fracture for both nucleation
and propagation of fractures in rock under uni-axial compression have been demon-
strated in Paper C and Paper D. The work presented in Paper C shows the ability
of the proposed model to reproduce experimental results of crack evolution for arti-
ficial rock samples with pre-existing inclined cuts. Paper D demonstrates the ability
of the model to reproduce crack nucleation without any pre-existing sharp corner.



5.2 Phase-field approach for brittle fractures in rock 49

Finally, it should be noted that, when simulating fractures under compression, the
internal surfaces of the crack will in many cases come into contact. Even though the
presented phase-field model, do not take this self contact into account the proposed
model produces results in good agreement to experimental observations both with
respect to crack patterns and critical stress loads.

5.2.4 Numerical simulation of a single edge notched shear test

To demonstrate that the choice made for the strain energies equation (5.59)-(5.60)
does not affect the capability of the model to generate fractures driven from only
tensile stresses, this section presents the numerical results for a single edge notched
shear example, often used as a benchmark within the phase-field fracture com-
munity. To demonstrate that, for the special case of G+

cI = G+
cII and G−cIII = G−cIV ≈

∞, the proposed model produces results in good agreement with [35]. The simula-
tion has been run for the three different formulations, the model proposed by [35],
the one proposed by [41] and the model presented in Paper D. The shear test is
comprised of a square plate with a single initial crack from the left edge to the
middle of the plate along the horizontal centre-line, see Figure 5.6. For the sim-
ulation the Young’s modulus is E = 210 GPa, Poisson’s ratio ν = 0.3 and the
critical energy release rate GcI = GcII = 2.7 × 10−3 MN/m. For the proposed
model, the G+

cIII = G+
cIV = 1 × 1010 MN/m, an artificially high value, such that

no fractures will evolve from compressive stresses during the simulation. The sim-
ulations are conducted using a uniform mesh with element size he = 1

2`0 which
coincides with a mesh of approximately 74, 000 elements. Furthermore, the sim-
ulations are run using a displacement driven context with constant displacement
increment of ∆u = 1 × 10−5 mm, and the mobility parameter m̃1 = 1.0 × 10−12

and m̃1 + m̃2 = 1.0.

0.5 0.5

0.5

0.5

u

Figure 5.6: Geometry and boundary conditions for the 1 × 1 mm2 plate in the
single edge notched shear test.
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Figure. 5.7 presents the crack pattern at different stages of the simulation while Fig-
ure. 5.8 shows the load-deflection curve for the single edge notched test. The results
produced with the suggested modified phase-field model are in good agreement with
the results presented by Miehe et al. [35] and Amor et al. [41]. Furthermore, in the
results from the model proposed by Amor et al. the crack makes a sharp turn
toward the right edge of the plate just before reaching the bottom of the plate.
In the absence of experimental results, it is difficult to judge which result is more
physically relevant, but crack appearing the results from the model proposed by
Amor et al. is not seen in the results from the other models.
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Figure 5.7: Crack patterns for the single edge notched shear test. a) u = 9.8×10−3

mm, b) u = 11.8× 10−3 mm and c) u = 14.0× 10−3 mm.

The results shown in Figure 5.7 and 5.8 demonstrate that the proposed modified
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phase-field fracture model produces negligible changes in the predicted crack path
as well as only small differences in the load-deflection curves compared to earlier
work using the standard phase-field fracture model.
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Figure 5.8: Force-displacement curve for the single edge notched shear test.

It can be observed, that even for this special case of G+
cI = G+

cII and G−cI = G−cII ≈ ∞,
the proposed model differs from the models presented in earlier work, in the choice
made for the strain energies in equation. (5.59) and (5.60). Another benefit of using
the model proposed in this thesis is that formulation converges in a significantly
lower number of iterations to find the solution of the mechanical part than the
models proposed by Miehe et al. [35] and Amor et al. [41]. This is likely due to the
redefining equation. (5.46) into equation. (5.56).

5.3 NUMERICAL FORMULATION

5.3.1 Finite element method

The finite element method was introduced to engineering applications in the 1960s,
and is a numerical method that solves general differential equations in an approxim-
ate manner. This is done by assuming that the differential equation that describes
the physical problems holds for a set region. Instead of finding an approximation
that holds over the entire region, the region is divided into smaller parts, so-called
finite elements, for which the approximation is applied. The assembly of all ele-
ments is called a finite element mesh. Even if the physical problem varies in a highly
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non-linear manner over the region, it is assumed that a linear or quadratic approx-
imation will hold in each element. This is acceptable if the element is small enough.
Having found the solution for the individual elements it is possible to find the ap-
proximate solution for the entire region. Extensive work have been accomplished
on the topic over the years, see, e.g., [43–45] for an overview.

5.3.2 Isogeometric analysis

Hughes et al., [46], first suggested the term isogeometric analysis, as the name for
a recently developed computational approach that utilises the design geometry for
analysis. Although earlier work has been presented on computational approaches
using the original design from Computer Aided Geometric Design (CAGD), the
pioneering work by Hughes et al. [46] revealed the potential of using Non-Uniform
Rational B-splines for analysis.

The main concept behind the development of isogeometric analysis was that, by
using the same basis function for both geometrical and numerical discretisation,
it would be possible to reduce the overall computational cost. The idea was that,
by going from the use of piecewise polynomials to approximate the geometry and
solution fields to utilising the basis functions from CAGD also for analysis, it would
be possible to remove the need to recreate a geometry and constructing a mesh for
analysis. Even though the original goal, to remove the need to create separate mod-
els for analysis, might not have been reached, the use of higher-order basis function
has proven to have other benefits, i.e., a smother representation of the solution fields
as well as opening up the possibility of using quadrature rules evaluated on element
boundaries, reducing the total number of quadrature points [46], [47]. To give a
brief introduction to the concept of IGA and to elucidate some of the differences
between conventional FEA and IGA, this section will review the basic concepts
of isogeometric analysis. For a more extensive description, the reader is referred
to [46] and [19].

Basic concept of B-splines

To introduce the concept of the NURBS-based isogeometric framework used in this
work we start by defining a B-spline curve. A B-spline curve is a linear combination
of B-spline basis functions, Ni,p, i = 1, 2, ..., n and a set of corresponding control
points Pi ∈ Rd, i = 1, 2, ..., n.

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi (5.64)

An example of a second order B-spline with three control points is illustrated in
Figure 5.9. The B-spline basis functions Ni,p are constructed from a non-decreasing
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i
1
2
3

Pi
(0, 0)
(0, 1)
(1, 1)

Ξ = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, }
= {0, 0, 0, 1, 1, 1}

Figure 5.9: A second order B-spline curve, C(ξ).

set of coordinates in the parameter space, written as Ξ = {ξ1, ξ2, ..., ξn+p+1}, where
ξi ∈ R denotes the ith knot of the knot vector Ξ, p indicates the order of the poly-
nomial function and n represents the number of basis functions needed to construct
a specific B-spline curve. With a given knot vector, ξi, and a known polynomial
order, p, it is possible to construct a B-spline basis function. For the case of (p = 0),
the basis function takes a piecewise constant shape given from

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise (5.65)

For p = 1, 2, 3, ... the B-spline basis function can be constructed by using the ex-
pression,

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (5.66)

which is referred to as the Cox-de Boor formula, first presented in [48] and [49].

NURBS representation

One issue arising when using B-spline, is that not all types of geometries can be
represented exactly using polynomial functions. To overcome this problem rational
B-splines were introduced by Versprille in [50]. This generalisation of B-splines
is constructed by introducing a non-negative weight, wi, to each control point and
making use of the definition of rational functions as the ratio of two polynomials [51].
Non-Uniform Rational B-splines or NURBS are today standard in many CAGD
softwares and the fact that NURBS algorithms are fast and stable make them a
good choice also for analysis. To construct NURBS basis functions one can make
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use of the basis functions for B-splines,

Rpi (ξ) =
Ni,p(ξ)wi
W (ξ)

(5.67)

where W (ξ) is called a weighting function, defined as

W (ξ) =

n∑
î=1

Nî,p(ξ)wî (5.68)

If wi = 1 for all i, then Rpi (ξ) = Ni,p(ξ) for all i. In fact, if the value of wi = a for
all i then Rpi (ξ) = Ni,p(ξ), i.e., the Ni,p(ξ) are special cases of Rpi (ξ) where all the
weights take the same value. Using the NURBS basis functions Rpi (ξ), i = 1, 2, ..., n
and their corresponding control points Pi, a piecewise NURBS curve, is constructed
from

C(ξ) =

n∑
i=1

Rpi (ξ)Pi (5.69)

To be able to perform two- and three-dimensional analysis, NURBS surfaces and
bodies need to be defined. This is done in a similar manner. A NURBS body is
given by

S(ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Rp,q,ri,j,k (ξ, η, ζ)Pi,j,k (5.70)

where the NURBS basis function, Rp,q,ri,j,k (ξ, η, ζ), is constructed from three sets of
knot vectors, and their respective weighting functions W (ξ, η, ζ).

Rp,q,ri,j,k (ξ, η, ζ) =
Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k

W (ξ, η, ζ)
(5.71)

where

W (ξ, η, ζ) =

n∑
î=1

m∑
ĵ=1

l∑
k̂=1

Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂ (5.72)

In the isogeometric framework the concept of elements is represented by the non-
zero valued knot spans. This is illustrated in Figure 5.10, where a two dimensional
plate is constructed from two knot vectors, a set of control points Pi,j and their
corresponding weights wi,j . The geometry is constructed of one knot vector, Ξ =
{0, 0, 0, 0.5, 1, 1, 1} in the direction of the arc of the hole and one knot vector,
H = {0, 0, 0, 1, 1, 1}, in the radial direction, thus creating a plate consisting of two
elements. The element specific basis functions are constructed from the non-zero
valued basis functions in the active knot span. The number of active functions in
a knot span is determined as np = (p + 1) × (q + 1) × (r + 1). For analysis, the
basis functions are evaluated at the chosen integration points of the parent element,
see Figure 5.10d). These element specific NURBS basis functions will be denoted
N e
a(ξ, η, ζ) in the remainder of this work.
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2
)/2
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(1 + 1√
2
)/2
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Ξ = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7}
= {0, 0, 0, 0.5, 1, 1, 1}

H = {η1, η2, η3, η4, η5, η6}
= {0, 0, 0, 1, 1, 1}
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Figure 5.10: A NURBS surface of the symmetric part of a plate with a circular
hole constructed from two knot vectors, Ξ and H, a set of control
points, Pi,j and their corresponding weights, wi,j . a) shows the
element mesh b) the control net c) the parameter space and basis
functions d) the parent element.

Note that the physical implication on the curve from duplicating a knot value is that
a sharp corner is created at ξ = 2. The reduced continuity at duplicated knot values
also has implications for analysis. The possibility to govern the continuity of the
basis functions also allows the determination of the continuity of the stresses solved
for in a displacement-based analysis. This can be used, e.g., to define material
boundaries.

Discretisation

The main difference between conventional FEA and IGA are the basis functions used
for discretisation. In isogeometric analysis the same basis functions that are used
to discretise the geometry are also used to solve for the approximate displacement
solution fields. The only difference to conventional FEA is that the basis functions
in IGA are element-specific. After solving the element-specific basis functions and
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their derivatives the procedure of establishing the stiffness matrix and internal force
vector is identical to conventional FEA. The displacement field for any given element
can be solved using the element specific basis function N e

a(ξ, η, ζ),

u =

np∑
a=1

N e
a(ξ, η, ζ)aea (5.73)

with aea the element displacements. The discretised form of the crack field is given
from

d =

np∑
a=1

N e
a(ξ, η, ζ)deh a (5.74)

The spatial derivatives of the displacement field can be approximated by taking
the derivative of the element-specific basis functions with respect to the physical
coordinates x,

∇u =

np∑
a=1

∂N e
a

∂x
aea (5.75)

similarly, the derivatives of the phase-field can be approximated by

∇d =

np∑
a=1

∂N e
a

∂x
dea h (5.76)

To obtain the derivatives of the basis functions with respect to the physical coordin-
ates, one must use the chain rule,

∂N e
a

∂x
=
∂N e

a

∂ξ

∂ξ

∂x
(5.77)

with ξ = {ξ, η, ζ}T . For a more straightforward implementation we rewrite the
displacement field using a vector-matrix notation, i.e., u = Neae, where the matrix
Ne contains the basis functions N e

a(ξ, η, ζ) for each control point in support of an
element

Ne =

N e
1 0 0 . . . N e

np 0 0

0 N e
1 0 . . . 0 N e

np 0

0 0 N e
1 . . . 0 0 N e

np

 (5.78)

Likewise, the discretised form of the phase-field can be determined as, d = Ne
dd
e
h

with Ne
d defined as

Ne
d =

[
N e

1 N e
2 . . . N e

n

]
(5.79)

In a similar manner we rewrite (5.75) in matrix form,

ε = Beae (5.80)
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where the matrix Be is an operator mapping the element discrete displacements to
the local strains.

B =



∂Ne
1

∂x1
0 0 . . .

∂Ne
np

∂x1
0 0

0
∂Ne

1
∂x2

0 . . . 0
∂Ne

np

∂x2
0

0 0
∂Ne

1
∂x3

. . . 0 0
∂Ne

np

∂x3
∂Ne

1
∂x2

∂Ne
1

∂x1
0 . . .

∂Ne
np

∂x2

∂Ne
np

∂x1
0

∂Ne
1

∂x3
0

∂Ne
1

∂x1
. . .

∂Ne
np

∂x3
0

∂Ne
np

∂x1

0
∂Ne

1
∂x3

∂Ne
1

∂x2
. . . 0

∂Ne
np

∂x3

∂Ne
np

∂x2


(5.81)

Finally, the discretised gradient of the fracture field are determined as

∇de = Be
dd
e
h (5.82)

with

Be
d =


∂Ne

1
∂x1

∂Ne
2

∂x1
. . . ∂Ne

n
∂x1

∂Ne
1

∂x2

∂Ne
2

∂x2
. . . ∂Ne

n
∂x2

∂Ne
1

∂x3

∂Ne
2

∂x3
. . . ∂Ne

n
∂x3

 (5.83)

The numerical implementation of the presented equations has been used in the work
presented in Paper B-D.





6 Conclusions

The use of numerical methods is becoming common practise within geotechnical
engineering, and the ability to predict soil and rock behaviour using numerical
models is pivotal to solve many engineering problems. In this thesis, research
concerning methods for simulating the behaviour of soil and rock behaviour have
been presented. The research presented in the dissertation demonstrates both the
importance of understanding numerical tools to produce reliable results, as well as
the opportunities they offer to increase our understanding of complicated failure
processes in rocks and soils.

6.1 MAIN CONTRIBUTIONS

The main contributions of this work include:

• Although numerical methods can be a great help during the design of rather
uncomplicated foundations, the use of simplified methods can lead to mis-
conceptions of structural behaviour. This is demonstrated by comparing the
effects of using simplified methods to fully coupled finite element analysis
during the dimensioning of reinforcements in raft foundations.

• In this thesis, a modified phase-field fracture model for simulation of crack
propagation in porous rocks has been proposed. By introducing a split of the
fracture energy release rate the proposed phase-field model is able to capture
the characteristic behaviour of fractures in porous rock.

• By comparing numerical results to Digital Image Correlation (DIC) analysis
carried out during uniaxial plane strain compression tests, Paper C and Pa-
per D have shown that the modified phase-field fracture model gives results
in good agreement with the experimental observations both with respect to
crack patterns and critical stress loads. It has also been shown that the pro-
posed phase-field model is able to reproduce the formation of compressive
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cracks as well as complex crack patterns without any additional algorithmic
treatment.

During the course of the research presented in this thesis, it has been shown, that
for drained soils, the isogeometric framework is a viable option for modelling of soil
behaviour. The use of IGA opens up a new potential for simulations of complicated
geotechnical applications. Such as retaining walls in weak soil or installations of
friction piles, often involving complicated contact problems and fluid flow, which
could benefit from the higher order shape functions of the isogeometric framework.

6.2 FUTURE WORK

The promising results using isogeometric analysis in different engineering fields have
the potential to be transferred to soil mechanics and geotechnical engineering. As
a number of papers have been published, showing promising results of using iso-
geometric analysis for flow problems in porous media, a natural step is to expand
the analysis presented in Paper B to include steady-state groundwater flow. An-
other exiting prospect for future work is to apply the isogeometric framework to
soil-structure interaction. The C0-continuous basis function of IGA have a prom-
ising outlook on overcome the convergence problem often occurring when using
conventional FEA.

Paper C and Paper D have demonstrated that phase-field fracture models have a
great potential for simulating complicated fracture processes in rocks. However, one
remaining issue for simulations of fractures under compression using any phase-field
model is the treatment of self contact of the fracture surfaces. The problem with
self contact when using phase-field models provides an interesting challenge to be
solved.
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