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1 Basic concepts

1.2 Vertical stresses

σz =

∫
γ(z) dz (1.1)

σz =

n∑
i=1

g · ρi · zi =

n∑
i=1

γi · zi (1.2)

where; σz = The vertical stress in the soil given in [kPa]
γ = The unit weight of the soil, in [kN/m3]
z = Depth in [m]

1.3 E�ective stress

σ′z = σz − u (1.3)

where; σ′z = The e�ective vertical stress given in [kPa]
σz = The vertical stress given in [kPa]
u = The pore water pressure given in [kPa]

1.4 Pore water pressure

In hydrostatic conditions

u = γw · zw (1.4)

where; u = Pore water pressure given in [kPa]
γw = The unit weight of water, in [kN/m3]
zw = Depth from groundwater table [m]

1.5 2:1 method

For the two-dimensional case:

b

z

z/2 z/2

∆σ =
b · q
b+ z

(1.5)
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where; ∆σ = Additional stress given in [kPa]
q = Surface load given in [kPa]
b = Width of the load given in [m]
z = Depth in [m]

For the case with limited extension in two directions, i.e. rectangular load:

∆σ =
b · l · q

(b+ z)(l + z)
(1.6)

where; ∆σ = Additional stress given in [kPa]
q = Surface load given in [kPa]
b = Width of the load given in [m]
l = Length of the load given in [m]
z = Depth in [m]

1.6 Settlement calculations

δ =

∫ h

0

∆σ(z)

M(z)
dz (1.7)

where; δ = Deformation given in [m]
M(z) = Compression modulus [kPa]
∆σ = Additional stress in [kPa]
z = Depth in [m]

Settlement equation for constant compressive modulus in the whole stress range:

δ =
∑
i

∆σi
Mi
· hi (1.8)



1.6 Settlement calculations May 15, 2019

where; δ = Deformation given in [m]
M = Compression modulus [kPa]
∆σ = Additional stress in [kPa]
h = Thickness in [m]

Bi-linear compressive modulus for the stress range at hand:

δ =
∑
i

(σ′c − σ′0
M0

+
σ′0 + ∆σ − σ′c

ML

)
· hi (1.9)

where; δ = Deformation given in [m]
M0 = Compression modulus where the stress is less than the pre consolidation pressure [kPa]
ML = Compression modulus where the stress is greater than the pre consolidation pressure [kPa]
∆σ = Additional stress in [kPa]
σ′c = The pre consolidation pressure in [kPa]
σ′0 = Stress level in the soil in [kPa]
h = Thickness in [m]

For the case with rather high stress levels the stress-strain curve is no longer linear. The com-
pressive modulus can then be evaluated as, M ′, by plotting the modulus as a function of stress.
For high stress levels the settlement can then be evaluated as:

δ =
∑
i

(
σ′c − σ′0
M0

+
σL − σ′c
ML

+
1

M ′
ln
(

1 + (σ′0 + ∆σ − σ′L) · M
′

ML

))
· hi (1.10)

where; δ = Deformation given in [m]
M0 = Compression modulus where the stress is less than the pre consolidation pressure [kPa]
ML = Compression modulus where the stress is greater than the pre consolidation pressure [kPa]
M ′ = Increase rate of compression modulus in high stress ranges
∆σ = Additional stress in [kPa]
σ′c = The pre consolidation pressure in [kPa]
σ′0 = Initial stress level in the soil in [kPa]
σ′L = Stress level in the soil at which hardening behaviour starts [kPa]
h = Thickness in [m]
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2 Eurocode

2.2 Ultimatte Limite States GEO - STR

Design Approach 1 consisting in two combinations: in Combination 1 partial factors are
applied to the actions while soil strength parameters are not factored; in Combination
2 partial factors are applied to the ground strength parameters while permanent actions
are not factored and a smaller partial factor than in Combination 1 is applied to variable
actions

Design Approach 2 factors are applied to actions (or e�ects of actions) and to resistances
simultaneously

Design Approach 3 factors are applied separately to structural and geotechnical actions, and
to material properties simultaneously

Types of geotechnical structures Design Approach
Piles, design through calculation DA 2
Piles, design through trial loading DA 2
Piles, design from constructive load-bearing capacity DA 3
Retaining structures DA 3
Slopes and embankments ∗ DA 3
Slabs DA 3
∗ does not apply to natural slopes.

2.3 Reliability management

Partial factors for consequences classes

• CC1: γd = 0.83,

• CC2: γd = 0.91,

• CC3: γd = 1.0.

2.4 Design values of actions

The combination of actions for STR and GEO limit states is the less favourable of the two
following expressions:

Ed = γd(
∑
j≥1

γG,jGk,j + γQ,1ψ0,1Qk,1 +
∑
i≥1

γQ,iψ0,iQk,i) (2.1)

Ed = γd(
∑
j≥1

ξγG,jGk,j + γQ,1Qk,1 +
∑
i≥1

γQ,iψ0,iQk,i) (2.2)
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2.5 Design values of geotechnical parameters May 15, 2019

where; Gk = Characteristic permanent load
Qk = Characteristic variable load
ψ, γG and γQ = Partial factors according to the tables below

Design Approach 1: Applying in separate calculations design values from Table 2 and Table
1 to the geotechnical actions as well as the other actions on/from the structure;

Design Approach 2: Applying design values from Table 1 to the geotechnical actions as well
as the other actions on/from the structure;

Design Approach 3: Applying design values from Table 2 to the geotechnical actions and,
simultaneously, applying partial factors from Table 1 to the other actions on/from the
structure,

Persistent
and tran-
sient design
situation

Permanent actions Leading
variable
action

Accompanying
variable actions

Unfavourable
(Gkj,sup)

Favourable
(Gkj,inf )

Action Main Others

Eq. 2.1 γG,j = 1.35
ξ = 1.0

γG,j = 1.0
ξ = 1.0

γQ,1 = 1.5∗ γQ,i = 1.5∗

Eq. 2.2 γG,j = 1.35
ξ = 0.89

γG,j = 1.0
ξ = 1.0

γQ,1 = 1.5∗ γQ,i = 1.5∗

∗ ATTENTION: γQ is always zero when the action is favourable

Table 1: Design values of actions (STR/GEO) (Set B)

Persistent
and tran-
sient design
situation

Permanent actions Leading
variable
action

Accompanying
variable actions

Unfavourable
(Gkj,sup)

Favourable
(Gkj,inf )

Action Main Others

γG,j = 1.1
ξ = 1.0

γG,j = 1.0
ξ = 1.0

γQ,1 = 1.4∗ γQ,i = 1.4∗

∗ ATTENTION: γQ is always zero when the action is favourable

Table 2: Design values of actions (STR/GEO) (Set C)

2.5 Design values of geotechnical parameters

Xd = Xk/γM (2.3)

where; Xd = Design value of parameter
Xk = Characteristic value of parameter
γM = Partial factors according to the table below
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Soil parameter Symbol
Set

M1 M2
Angle of shearing resistance∗ γϕ′ 1.0 1.3
E�ective cohesion γc′ 1.0 1.3
Undrained shear strength γcu 1.0 1,5
Uncon�ned strength γqu 1.0 1.5
Weight density γγ 1.0 1.0
∗This factor is applied to tanϕ′

Table 3: Partial factors for soil parameters(γM )

3 Slope stability

3.1 Plane slip surfaces

gvy

γ

z

hw

Pp

Pa

Lβ

Pa = Pp

Ed = γd(γG γ h+ γQ q) ∆l cosβ sinβ (3.1)

Rd = τd =
c

γc
+ σ′z cos2 β

tanφ

γφ
(3.2)

with:

σ′z = γG(γ h− γw hw) + γQ q (3.3)

Safety factor:

Fcφ =
c

γ · z · sinβ · cosβ
+
γ · z − γw · hw

γ · z
· tanφ

tanβ
(3.4)

where; c = Cohesion.
β = Angle of the slope.
γ = Unit weight of the soil.
γw = Unit weight of water.
z = Depth of soil layer.
hw = Depth from ground water table.
φ = Angle of internal friction.
γd, γG, γQ, γc and γφ = Partial coe�cients according to the tables in Section 2.
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3.2 Circular slip surfaces May 15, 2019

3.2 Circular slip surfaces

3.2.1 General method

R

α

W

eW

cu

Ed = γd(γGWk eW ) (3.5)

Rd =
cu
γcu

R l =
cu
γcu

R2 α (3.6)

Fc =
cu ·R2 · α
W · eW

(3.7)

where; cu = Undrained cohesion.
W = Soil weight.
eW = Lever to centre of gravity.
γd, γG and γcu = Partial coe�cients according to the tables in section 2.

3.2.2 Liquid analogy

R

α

W

xe1

Q1

cu

W · eW = Q1 · e1 (3.8)
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3.2 Circular slip surfaces May 15, 2019

3.2.3 Method of slices

R

α

∆Wi

xi

y

Pa

cu

bi

hi

∆li

W · eW =
∑

(∆Wi · xi) (3.9)

Rd =
∑

(
cu
γcu

∆li) (3.10)

where; cu = Undrained cohesion.
∆Wi = bi · hi · γ
xi = Lever to centre of gravity of soil sector.
∆li = Length of slip surface of soil sector.
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4 Foundations

4.1 Spread foundations

4.1.1 Design actions

Loads from the structure
unfavorable loads

use the most unfavorable of the next two equations

Ed = γd · 1.35 ·Gkj,sup + γd · 1.5 · ψ0,1 ·Qk,1 + γd · 1.5 · ψ0,i ·Qk,i (4.1)

Ed = γd · 0.89 · 1.35 ·Gkj,sup + γd · 1.5 ·Qk,1 + γd · 1.5 · ψ0,i ·Qk,i (4.2)

favorable loads

Ed = Gkj,inf (4.3)

Geotechnical loads
unfavorable loads

Ed = γd · 1.10 ·Gkj,sup + γd · 1.4 ·Qk,1 + γd · 1.4 · ψ0,i ·Qk,i (4.4)

favorable loads

Ed = Gkj,inf (4.5)

4.1.2 Bearing resistance

Rd = qbA
′; (4.6)

where; qb = Bearing capacity.
A′ = E�ective area of the slab.

4.1.3 General bearing capacity equation

Bearing capacity:

qbd = cd ·Ncd · sc · dc · ic + q ·Nqd · sq · dq · iq + 0.5 · γ ·B ·Nγd · sγ · dγ · iγ (4.7)

where cd is the shear strength design value and Ncd, Nqd and Nγd are the design values for the
bearing capacity factors calculated using φ′d.

φ′d = arctan

(
tanφ′

γφ

)
(4.8)

cd =
c

γc
(4.9)

Bearing capacity factors, Nc, Nq and Nγ :
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4.1 Spread foundations May 15, 2019

For φ = 0, (undrained conditions)

Nc = π + 2 (4.10)

Nq = 1 (4.11)

Nγ = 0 (4.12)

Table 4: Values of the bearing capacity factors Nc , Nq och Nγ for di�erent values of the friction
angle φ′.

φ′ Nc Nq Nγ
16 11.6 4.34 1.42

17 12.3 4.77 1.70

18 13.1 5.26 2.02

19 13.9 5.80 2.40

20 14.8 6.40 2.84

21 15.8 7.07 3.36

22 16.9 7.82 3.96

23 18.0 8.66 4.67

24 19.3 9.60 5.51

25 20.7 10.7 6.48

26 22.3 11.9 7.64

27 23.9 13.2 8.99

28 25.8 14.7 10.6

29 27.9 16.4 12.5

30 30.1 18.4 14.7

φ′ Nc Nq Nγ
31 32.7 20.6 17.4

32 35.5 23.2 20.6

33 38.6 26.1 24.4

34 42.2 29.4 29.0

35 46.1 33.3 34.5

36 50.6 37.8 41.1

37 55.6 42.9 49.1

38 61.4 48.9 58.9

39 67.9 56.0 70.9

40 75.3 64.2 85.6

41 83.9 73.9 104

42 93.7 85.4 126

43 105 99.0 154

44 118 115 190

45 134 135 234

Empirical correction factors:

E�ect of eccentric load:

e = eh ·
H

V
(4.13)

E�ective Area:

A′ = bef · lef (4.14)

where; bef = b− 2 · eb
lef = l − 2 · el
b = The width of the footing.
l = The length of the footing.

Shape of footing:

sc = 1 + 0.2
bef
lef

; if φ′ = 0 (4.15)

sc = 1 + 0.2
Nq bef
Nc lef

; if φ′ 6= 0 (4.16)

sq = 1 + tanφ′
bef
lef

(4.17)
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4.1 Spread foundations May 15, 2019

sγ = 1− 0.4
bef
lef

(4.18)

Foundation depth:

dc = 1 + 0.35
d

bef
; dc ≤ 1.7 (4.19)

dq = 1 + 0.35
d

bef
; dq ≤ 1.7 (4.20)

dγ = 1 (4.21)

where; d = The foundation depth.

Inclined load:

ic = 1− mH

bef lefcuNc
; iq = 1; if φ′ = 0 (4.22)

ic = iq −
1− iq

Nc tanφ′
; if φ′ 6= 0 (4.23)

iq =

(
1− H

V +
bef lef cd
tanφ′

)m
(4.24)

iγ =

(
1− H

V +
bef lef cd
tanφ′

)m+1

(4.25)

where; V = Vertical load.
H = Horizontal load.

When the horizontal load component acts in transverse direction of the foundation the parameter
m is given by

m = mb =
2 lef + bef
lef + bef

(4.26)

and when acts in longitudinal direction m is given by

m = ml =
2 bef + lef
bef + lef

(4.27)

When the horizontal load component acts in a direction that forms the angle θ with the longi-
tudinal direction of the foundation m is given by

m = ml cos2 θ +mb sin2 θ (4.28)
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4.2 Pile foundations May 15, 2019

4.2 Pile foundations

4.2.1 Characteristic value of the geotechnical bearing capacity

Rc,k = Rb,k +Rs,k = qb,k ·Ab +Rs,k ·As (4.29)

where; Rc,k = Total resistance.
Rb,k = End resistance.
Rs,k = Shaft resistance.
qb,k = The nominal compressive strength of the soil at the toe at ground failure.
Ab = The area of the pile section at the toe.
qs,k = The (average) friction strength at interface between soil and shaft.
As = Total area of the shaft.

4.2.2 Friction piles, β method

Figure 1: Values of the friction factor β and
the bearing capacity factor Nq (From �Norsk
peleveiledning�)

Shaft resistance:

qs = β · σ̄′v (4.30)

End resistance:

qb = Nq · σ′v (4.31)

where; σ′v = The e�ective vertical stress in the soil.
σ̄′v = The average e�ective vertical stress in the soil along pile.
β = Friction factor.
Nq = Bearing capacity factor.
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4.2 Pile foundations May 15, 2019

4.2.3 Cohesion piles

Figure 2: Values of the adhesion factor α (From
�Norsk peleveiledning�)

Shaft resistance:

qs = α · c̄u (4.32)

End resistance:

qb = N · cu (4.33)

where; cu = The undrained shear strength.
c̄u = The average undrained shear strength.
α = Adhesion factor.
N = 6-9, end bearing capacity factor.

4.2.4 Design value of bearing capacity (for ultimate limit state)

Rc,d =
1

γRd
·

(
qb ·Ab
γb

+
qs ·As
γs

)
(4.34)

where; γRd = Model factor.
γb = Toe resistance factor.
γs = Shaft resistance factor.
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4.2 Pile foundations May 15, 2019

4.2.5 Settlements

Action e�ect in a pile:

E = Q∞ +

∫ z

0

qs dA (4.35)

The resistance at depth z:

R = Rtoe +

∫ Lp

z

qs dA (4.36)

where; Q∞ = Long-time loading of the pile.
Rtoe = Toe resistance.
qb = Shaft resistance.
Lp = Length of pile.

Redistribution of the load:

∆σ =
Q

Lp − zn
z − zn

B[B + (z − zn)]
for zn < z < Lp (4.37)

∆σ =
Q

[B + (z − Lp)][B + (z − zn)]
for z > Lp (4.38)

where; zn = Depth on the neutral plane.
B = Width of the foundations.
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5 Settlements, Time dependence

5.2 Coe�cient of consolidation

For the case with constant permeability:

cv = k · M
γw

(5.1)

where; cv = Coe�cient of consolidation [m2/s or m2/year]
k = Permeability [m2/s] or [m2/year]
M = Compression modulus [kPa]
γw = Unit weight of water, [kN/m3]

Time factor:

Tv = cv ·
t

d2
(5.2)

where; Tv = Time factor
cv = Coe�cient of consolidation [m2/s or m2/year]
t = time [s or year]
d = Half of soil depth, [m]

The settlement at time t:

δt = Uv · δtot (5.3)

where; Uv = The average degree of consolidation
δt = Settlement at time t
δtot = Total or �nal settlement
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6 Retaining structures

6.1.1 Active earth pressure

For clay:

Pad = (σz − 2 · cud) (6.1)

For frictional material:

Pad = (σz − pw) · tan2(45◦ − φ′d
2

) + pw (6.2)

where; Pad = Active earth pressure, in [kPa]
σz = Vertical stress in the soil, in [kPa]
cud = Material cohesion, in [kPa]
pw = Ground water pressure [kPa]
φ′d = Angle of internal friction [deg]

6.1.2 Passive earth pressure

For clay:

Ppd = (σz + 2 · cud) (6.3)

For frictional material:

Ppd = (σz−pw) · tan2(45◦+
φ′d
2

) +pw (6.4)

Earth pressure if clay exists at the bottom of
the excavation pit:

Pnet,d = Ncb · cud − (γ ·H + qd) (6.5)

where; Ppd = Passive earth pressure, in [kPa]
σz = Vertical stress in the soil, in [kPa]
Ncb = Bearing capacity factor
H = Depth to bottom of excavation pit, in [m]
cud = material cohesion, in [kPa]
pw = Ground water pressure [kPa]
φ′d = Angle of internal friction [deg]
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6.1.3 Static equilibrium

Length of the sheet pile wall:

Pnet,d · epn − γSda · Pda · epda (6.6)

Anchor or strut force:

Snet,d = Pnet,d − γSda · Pad (6.7)

where; Pad = Active earth pressure, in [kPa]
γSda = Partial coe�cient
Pnet,d = Resulting net pressure, in [kPa]
Snet,d = Horizontal force at equilibrium, in [kPa]

6.1.4 Stability of the excavation bottom

Reliability condition, bottom heave:

1.1 γd (σvHd − pd) ≤ γRdpNcb c∗ud
(6.9)

where; γRdp = Partial coe�cient
c∗ud = mean value of the undrained

shear strength below escavation bottom

Condition for hydraulic uplift:

γwHw ≤
0.9 γsoil d

1.1 γd

Condition for hydraulic erosion:

i < icrit =
γ′soil
γw γRd

γRd = 1.5 for coarse material and 2.5 for silt.
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7 Lime/Cement columns

7.1 For the elastic zone- zone B:

Mblock = a · Ecol + (1− a) ·Msoil (7.1)

where; Mblock = Modulus of compression for soil-coloumn composite, [kPa]
Ecol = Modulus of elasticity for LCC, [kPa]
Msoil = Modulus of compression for the soil, [kPa]
a = Proportion of column area per total unit area, i.e (πr2/s2)

Strain in block:

εblock =
∆σblock
Mblock

(7.2)

where; ∆σblock = Average stress increase in block, [kPa]
εblock = Strain level in block

Stress increase in soil:

∆σsoil = ∆σblock ·
Msoil

Mblock
(7.3)

Stress increase in column:

∆σcol = ∆σblock ·
Ecol
Mblock

(7.4)

7.2 For the plastic zone - zone A:

The strength of the column:

fLCC = 1.5 · cu,col + 3 · σ′h,col (7.5)

where; cu,col = The undrained shear strength of the columns, [kPa]
σ′h,col = The horizontal e�ective stress in the soil against the column, [kPa]

fLCC = The strength of the column, [kPa]

The horizontal e�ective stress, σ′h,col can be calculated as:

σ′h,col = K0 · σ′v0 + 0.5 ·∆σ′soil (7.6)

Stress levels in soil and columns:

∆σcol,pl = fLCC − σ′v0 (7.7)

∆σsoil =
∆σblock − a ·∆σcol,pl

1− a
(7.8)

where; σ′v0 = The e�ective stress in the columns before the application of the load, [kPa]
σ′col,pl = Stress level in the columns, in [kPa]

fLCC = The strength of the column, [kPa]
a = Proportion of column area per total unit area, i.e (πr2/s2)
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7.3 Stress increase at the border between zone A and B May 15, 2019

Using the above the stress in the soil for z = 0 and z = Zlim can be solved as:

∆σsoil(0) =
2 · q − 3 · a · cu,col

2 + a
(7.9)

∆σsoil(Zlim) = ∆σblock(Zlim) · Msoil

Mblock
(7.10)

Stress levels for soil/column block in zone A

∆σblocklim = Mblock ·
1.5 · cu,col + σ′v0

Ecol − 1.5 ·Msoil
(7.11)

where; cu,col = The undrained shear strength of the columns, [kPa]
σ′v0 = The e�ective stress in the columns before the application of the load, [kPa]
Mblock = Modulus of compression for soil-coloumn composite, [kPa]
Ecol = Modulus of elasticity for LCC, [kPa]
Msoil = Modulus of compression for the soil, [kPa]

7.3 Stress increase at the border between zone A and B

Columns extend to �rm ground:

∆σblock = q (7.12)

where; q = The applied load, in [kPa]
∆σblock = Average stress increase in block, [kPa]

Columns which do not reach �rm ground:

∆σblock = ηLC · q + (1− ηLC) · q · B

(B + z)
(7.13)

where; q = The applied load, in [kPa]
∆σblock = Average stress increase in block, [kPa]
ηLC = Key factor
B = Width of the load given in [m]
z = Depth in [m]

The Key factor ηLC determining what portion of the external load is transmitted unchanged to
the bottom of the stabilized soil:

ηLC =

(
D

H

)1/v

(7.14)

where; H = Depth down to �rm layer, in [m]
D = Length of columns, in [m]

and v is calculated as:

v =

(
Mblock

Msoil

)0.1

−

(
Msoil

Mblock

)0.1

(7.15)
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