Formulary, VGTF01 - May 15, 2019

1 Basic concepts

1.2 Vertical stresses

$$\sigma_z = \int \gamma(z) \, dz \tag{1.1}$$

$$\sigma_z = \sum_{i=1}^n g \cdot \rho_i \cdot z_i = \sum_{i=1}^n \gamma_i \cdot z_i \tag{1.2}$$

where; σ_z = The vertical stress in the soil given in [kPa] γ = The unit weight of the soil, in [kN/m³] z = Depth in [m]

1.3 Effective stress

$$\sigma'_{z} = \sigma_{z} - u$$
where; σ'_{z} = The effective vertical stress given in [kPa]
 σ_{z} = The vertical stress given in [kPa]

u = The pore water pressure given in [kPa]

1.4 Pore water pressure

In hydrostatic conditions

$$u = \gamma_w \cdot z_w \tag{1.4}$$

where; u = Pore water pressure given in [kPa] $\gamma_w = \text{The unit weight of water, in [kN/m³]}$ $z_w = \text{Depth from groundwater table [m]}$

1.5 2:1 method

For the two-dimensional case:

$$\Delta \sigma = \frac{b \cdot q}{b + z}$$
(1.5)

where; $\Delta \sigma$ = Additional stress given in [kPa] = Surface load given in [kPa] qb= Width of the load given in [m] = Depth in [m]z

For the case with limited extension in two directions, i.e. rectangular load:

$$\Delta \sigma = \frac{b \cdot l \cdot q}{(b+z)(l+z)} \tag{1.6}$$

where;

= Additional stress given in [kPa] $\Delta \sigma$

= Surface load given in [kPa] q

= Width of the load given in [m]b

l = Length of the load given in [m]

z= Depth in [m]

1.6 Settlement calculations

 $\delta = \int_0^h \frac{\Delta \sigma(z)}{M(z)} \ dz$ (1.7)

 δ = Deformation given in [m] where; M(z) = Compression modulus [kPa] = Additional stress in [kPa] $\Delta \sigma$ z= Depth in [m]

Settlement equation for constant compressive modulus in the whole stress range:

$$\delta = \sum_{i} \frac{\Delta \sigma_i}{M_i} \cdot h_i \tag{1.8}$$

 $\begin{array}{lll} \text{where;} & \delta & = \text{Deformation given in [m]} \\ & M & = \text{Compression modulus [kPa]} \\ & \Delta \sigma & = \text{Additional stress in [kPa]} \\ & h & = \text{Thickness in [m]} \end{array}$

Bi-linear compressive modulus for the stress range at hand:

$$\delta = \sum_{i} \left(\frac{\sigma'_c - \sigma'_0}{M_0} + \frac{\sigma'_0 + \Delta \sigma - \sigma'_c}{M_L} \right) \cdot h_i \tag{1.9}$$

where;

 δ

= Deformation given in [m]

 $\begin{array}{ll} M_0 & = \mbox{Compression modulus where the stress is less than the pre consolidation pressure [kPa]} \\ M_L & = \mbox{Compression modulus where the stress is greater than the pre consolidation pressure [kPa]} \\ \Delta \sigma & = \mbox{Additional stress in [kPa]} \\ \sigma'_c & = \mbox{The pre consolidation pressure in [kPa]} \\ \sigma'_0 & = \mbox{Stress level in the soil in [kPa]} \\ h & = \mbox{Thickness in [m]} \end{array}$

For the case with rather high stress levels the stress-strain curve is no longer linear. The compressive modulus can then be evaluated as, M', by plotting the modulus as a function of stress. For high stress levels the settlement can then be evaluated as:

$$\delta = \sum_{i} \left(\frac{\sigma_c' - \sigma_0'}{M_0} + \frac{\sigma_L - \sigma_c'}{M_L} + \frac{1}{M'} \ln\left(1 + (\sigma_0' + \Delta \sigma - \sigma_L') \cdot \frac{M'}{M_L} \right) \right) \cdot h_i \tag{1.10}$$

where;

δ

= Deformation given in [m]

- M_0 = Compression modulus where the stress is less than the pre-consolidation pressure [kPa]
- M_L = Compression modulus where the stress is greater than the pre consolidation pressure [kPa]
- M' = Increase rate of compression modulus in high stress ranges
- $\Delta \sigma$ = Additional stress in [kPa]
- σ_c' = The pre consolidation pressure in [kPa]
- σ'_0 = Initial stress level in the soil in [kPa]
- σ'_L = Stress level in the soil at which hardening behaviour starts [kPa]

$$h = \text{Thickness in } [m]$$

2 Eurocode

2.2 Ultimatte Limite States GEO - STR

- **Design Approach 1** consisting in two combinations: in Combination 1 partial factors are applied to the actions while soil strength parameters are not factored; in Combination 2 partial factors are applied to the ground strength parameters while permanent actions are not factored and a smaller partial factor than in Combination 1 is applied to variable actions
- **Design Approach 2** factors are applied to actions (or effects of actions) and to resistances simultaneously
- **Design Approach 3** factors are applied separately to structural and geotechnical actions, and to material properties simultaneously

Types of geotechnical structures	Design Approach
Piles, design through calculation	DA 2
Piles, design through trial loading	DA 2
Piles, design from constructive load-bearing capacity	DA 3
Retaining structures	DA 3
Slopes and embankments *	DA 3
Slabs	DA 3

* does not apply to natural slopes.

2.3 Reliability management

Partial factors for consequences classes

- CC1: $\gamma_d = 0.83$,
- CC2: $\gamma_d = 0.91$,
- CC3: $\gamma_d = 1.0$.

2.4 Design values of actions

The combination of actions for STR and GEO limit states is the less favourable of the two following expressions:

$$E_d = \gamma_d \left(\sum_{j\ge 1} \gamma_{G,j} G_{k,j} + \gamma_{Q,1} \psi_{0,1} Q_{k,1} + \sum_{i\ge 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}\right)$$
(2.1)

$$E_d = \gamma_d (\sum_{j \ge 1} \xi \gamma_{G,j} G_{k,j} + \gamma_{Q,1} Q_{k,1} + \sum_{i \ge 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i})$$
(2.2)

where;	G_k	= Characteristic permanent load
	Q_k	= Characteristic variable load
	$\psi, \gamma_G \text{ and } \gamma_Q$	= Partial factors according to the tables below

- **Design Approach 1:** Applying in separate calculations design values from Table 2 and Table 1 to the geotechnical actions as well as the other actions on/from the structure;
- **Design Approach 2:** Applying design values from Table 1 to the geotechnical actions as well as the other actions on/from the structure;
- **Design Approach 3:** Applying design values from Table 2 to the geotechnical actions and, simultaneously, applying partial factors from Table 1 to the other actions on/from the structure,

Persistent and tran- sient design	Permaner	nt actions	Leading variable action	Accompa variable	nying actions
situation	Unfavourable $(G_{kj,sup})$	Favourable $(G_{kj,inf})$	Action	Main	Others
Eq. 2.1	$\gamma_{G,j} = 1.35$ $\xi = 1.0$	$\gamma_{G,j} = 1.0$ $\xi = 1.0$		$\gamma_{Q,1}=1.5^*$	$\gamma_{Q,i} = 1.5^*$
Eq. 2.2	$\gamma_{G,j} = 1.35$ $\xi = 0.89$	$\gamma_{G,j} = 1.0$ $\xi = 1.0$	$\gamma_{Q,1} = 1.5^*$		$\gamma_{Q,i} = 1.5^*$
* ATTENTION: γ_Q is always zero when the action is favourable					

Table 1: Design values of actions (STR/GEO) (Set B)

Persistent and tran-	Permanent actions		Leading variable action	Accom variab	Accompanying variable actions	
situation	$ \begin{array}{l} \text{Unfavourable} \\ (G_{kj,sup}) \end{array} $	Favourable $(G_{kj,inf})$	Action	Main	Others	
	$\begin{array}{l} \gamma_{G,j} = 1.1 \\ \xi = 1.0 \end{array}$	$\gamma_{G,j} = 1.0$ $\xi = 1.0$	$\gamma_{Q,1} = 1.4^*$		$\gamma_{Q,i} = 1.4^*$	
* ATTENTION: γ_{0} is always zero when the action is favourable						

Table 2: Design values of actions (STR/GEO) (Set C)

2.5 Design values of geotechnical parameters

$$X_d = X_k / \gamma_M \tag{2.3}$$

where; X_d = Design value of parameter

- X_k = Characteristic value of parameter
- γ_M = Partial factors according to the table below

Coil nonomaton	0 1 1	Set	
Son parameter	Symbol	M1	M2
Angle of shearing resistance [*]	$\gamma_{arphi'}$	1.0	1.3
Effective cohesion	$\gamma_{c'}$	1.0	1.3
Undrained shear strength	γ_{cu}	1.0	1,5
Unconfined strength	γ_{qu}	1.0	1.5
Weight density	γ_{γ}	1.0	1.0
*This factor is applied to $\tan \varphi'$			

Table 3: Partial factors for soil parameters (γ_M)

3 Slope stability

3.1 Plane slip surfaces

$$E_d = \gamma_d (\gamma_G \gamma h + \gamma_Q q) \Delta l \cos \beta \sin \beta$$
(3.1)

$$R_d = \tau_d = \frac{c}{\gamma_c} + \sigma'_z \cos^2 \beta \frac{\tan \phi}{\gamma_\phi}$$
(3.2)

with:

$$\sigma'_{z} = \gamma_{G}(\gamma h - \gamma_{w} h_{w}) + \gamma_{Q} q$$
(3.3)

Safety factor:

$$F_{c\phi} = \frac{c}{\gamma \cdot z \cdot \sin\beta \cdot \cos\beta} + \frac{\gamma \cdot z - \gamma_w \cdot h_w}{\gamma \cdot z} \cdot \frac{\tan\phi}{\tan\beta}$$
(3.4)

where;

;	c	= Cohesion.
	β	= Angle of the slope.
	γ	= Unit weight of the soil.
	γ_w	= Unit weight of water.
	z	= Depth of soil layer.
	h_w	= Depth from ground water table.
	ϕ	= Angle of internal friction.
	$\gamma_d, \gamma_G, \gamma_Q, \gamma_c \text{ and } \gamma_{\phi}$	= Partial coefficients according to the tables in Section 2.

3.2.1 General method

$$E_d = \gamma_d(\gamma_C W_k e_W) \tag{3.5}$$

$$R_d = \frac{c_u}{R_l} R_l = \frac{c_u}{R_l} R^2 \alpha \tag{3.6}$$

$$F_c = \frac{c_u \cdot R^2 \cdot \alpha}{W \cdot e_W} \tag{3.7}$$

 $\begin{array}{lll} \text{where;} & c_u & = \text{Undrained cohesion.} \\ & W & = \text{Soil weight.} \\ & e_W & = \text{Lever to centre of gravity.} \\ & \gamma_d, \gamma_G \text{ and } \gamma_{cu} & = \text{Partial coefficients according to the tables in section 2.} \end{array}$

3.2.2 Liquid analogy

 $W \cdot e_W = Q_1 \cdot e_1$

α

(3.8)

3.2.3 Method of slices

$$W \cdot e_W = \sum (\Delta W_i \cdot x_i)$$

$$R_d = \sum \left(\frac{c_u}{\gamma_{cu}} \Delta l_i\right)$$
(3.9)
(3.10)

where; $c_u =$ Undrained cohesion.

- $\Delta W_i = b_i \cdot h_i \cdot \gamma$
- x_i = Lever to centre of gravity of soil sector.
- Δl_i = Length of slip surface of soil sector.

4 Foundations

4.1 Spread foundations

4.1.1 Design actions

 $\frac{\text{Loads from the structure}}{unfavorable \ loads}$

use the most unfavorable of the next two equations

 $E_d = \gamma_d \cdot 1.35 \cdot G_{kj,sup} + \gamma_d \cdot 1.5 \cdot \psi_{0,1} \cdot Q_{k,1} + \gamma_d \cdot 1.5 \cdot \psi_{0,i} \cdot Q_{k,i}$ (4.1)

$$E_d = \gamma_d \cdot 0.89 \cdot 1.35 \cdot G_{kj,sup} + \gamma_d \cdot 1.5 \cdot Q_{k,1} + \gamma_d \cdot 1.5 \cdot \psi_{0,i} \cdot Q_{k,i}$$
(4.2)

favorable loads

$$E_d = G_{kj,inf} \tag{4.3}$$

 $\frac{\text{Geotechnical loads}}{\textit{unfavorable loads}}$

$$E_d = \gamma_d \cdot 1.10 \cdot G_{kj,sup} + \gamma_d \cdot 1.4 \cdot Q_{k,1} + \gamma_d \cdot 1.4 \cdot \psi_{0,i} \cdot Q_{k,i}$$
(4.4)

favorable loads

 $E_d = G_{kj,inf} \tag{4.5}$

4.1.2 Bearing resistance

$$R_d = q_b A'; \tag{4.6}$$

where; q_b = Bearing capacity. A' = Effective area of the slab.

4.1.3 General bearing capacity equation

Bearing capacity:

$$q_{bd} = c_d \cdot N_{cd} \cdot s_c \cdot d_c \cdot i_c + q \cdot N_{qd} \cdot s_q \cdot d_q \cdot i_q + 0.5 \cdot \gamma \cdot B \cdot N_{\gamma d} \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \tag{4.7}$$

where c_d is the shear strength design value and N_{cd} , N_{qd} and $N_{\gamma d}$ are the design values for the bearing capacity factors calculated using ϕ'_d .

$$\phi_d' = \arctan\left(\frac{\tan\phi'}{\gamma_\phi}\right) \tag{4.8}$$

$$c_d = \frac{c}{\gamma_c} \tag{4.9}$$

Bearing capacity factors, N_c , N_q and N_{γ} :

For $\phi = 0$, (undrained conditions)

$$N_c = \pi + 2 \tag{4.10}$$

$$N_q = 1 \tag{4.11}$$

$$N_{\gamma} = 0 \tag{4.12}$$

Table 4: Values of the bearing capacity factors N_c , N_q och N_γ for different values of the friction angle ϕ' .

ϕ'	N_c	N_q	N_{γ}	ϕ'	N_c	N_q	N_{γ}
$\overline{16}$	11.6	4.34	1.42	$\overline{31}$	32.7	20.6	17.4
17	12.3	4.77	1.70	32	35.5	23.2	20.6
18	13.1	5.26	2.02	33	38.6	26.1	24.4
19	13.9	5.80	2.40	34	42.2	29.4	29.0
20	14.8	6.40	2.84	35	46.1	33.3	34.5
21	15.8	7.07	3.36	36	50.6	37.8	41.1
22	16.9	7.82	3.96	37	55.6	42.9	49.1
23	18.0	8.66	4.67	38	61.4	48.9	58.9
24	19.3	9.60	5.51	39	67.9	56.0	70.9
25	20.7	10.7	6.48	40	75.3	64.2	85.6
26	22.3	11.9	7.64	41	83.9	73.9	104
27	23.9	13.2	8.99	42	93.7	85.4	126
28	25.8	14.7	10.6	43	105	99.0	154
29	27.9	16.4	12.5	44	118	115	190
30	30.1	18.4	14.7	45	134	135	234

Empirical correction factors:

Effect of eccentric load:

$$e = e_h \cdot \frac{H}{V} \tag{4.13}$$

Effective Area:

 $A' = b_{ef} \cdot l_{ef} \tag{4.14}$

 $\begin{array}{lll} \text{where;} & b_{e\!f} &= b-2 \cdot e_b \\ & l_{e\!f} &= l-2 \cdot e_l \\ & b &= \text{The width of the footing.} \\ & l &= \text{The length of the footing.} \end{array}$

Shape of footing:

 $s_c = 1 + 0.2 \frac{b_{ef}}{l_{ef}};$ if $\phi' = 0$ (4.15)

$$s_c = 1 + 0.2 \frac{N_q \, b_{ef}}{N_c \, l_{ef}};$$
 if $\phi' \neq 0$ (4.16)

$$s_q = 1 + \tan \phi' \, \frac{b_{ef}}{l_{ef}} \tag{4.17}$$

$$s_{\gamma} = 1 - 0.4 \frac{b_{ef}}{l_{ef}} \tag{4.18}$$

Foundation depth:

$$d_c = 1 + 0.35 \frac{d}{b_{ef}}; \qquad d_c \le 1.7$$
(4.19)

$$d_q = 1 + 0.35 \frac{d}{b_{ef}}; \qquad d_q \le 1.7$$
(4.20)

$$d_{\gamma} = 1 \tag{4.21}$$

where; d = The foundation depth. Inclined load:

$$i_c = 1 - \frac{mH}{b_{ef} l_{ef} c_u N_c};$$
 $i_q = 1;$ if $\phi' = 0$ (4.22)

$$i_c = i_q - \frac{1 - i_q}{N_c \tan \phi'}; \qquad \text{if } \phi' \neq 0 \tag{4.23}$$

$$i_q = \left(1 - \frac{H}{V + \frac{b_{ef} \, l_{ef} \, c_d}{\tan \phi'}}\right)^m \tag{4.24}$$

$$i_{\gamma} = \left(1 - \frac{H}{V + \frac{b_{ef} \, l_{ef} \, c_d}{\tan \phi'}}\right)^{m+1} \tag{4.25}$$

where; V =Vertical load. H =Horizontal load.

When the horizontal load component acts in transverse direction of the foundation the parameter m is given by

$$m = m_b = \frac{2\,l_{ef} + \,b_{ef}}{l_{ef} + \,b_{ef}} \tag{4.26}$$

and when acts in longitudinal direction m is given by

$$m = m_l = \frac{2 b_{ef} + l_{ef}}{b_{ef} + l_{ef}}$$
(4.27)

When the horizontal load component acts in a direction that forms the angle θ with the longitudinal direction of the foundation m is given by

$$m = m_l \cos^2 \theta + m_b \sin^2 \theta \tag{4.28}$$

(4.29)

4.2 Pile foundations

4.2.1 Characteristic value of the geotechnical bearing capacity

$$R_{c,k} = R_{b,k} + R_{s,k} = q_{b,k} \cdot A_b + R_{s,k} \cdot A_s$$

where; $R_{c,k}$

 $R_{c,k}$ = Total resistance.

 $R_{b,k}$ = End resistance.

 $R_{s,k}$ = Shaft resistance.

- $q_{b,k}$ = The nominal compressive strength of the soil at the toe at ground failure.
- A_b = The area of the pile section at the toe.
- $q_{s,k}$ = The (average) friction strength at interface between soil and shaft.

 A_s = Total area of the shaft.

4.2.2 Friction piles, β method

where; σ'_v = The effective vertical stress in the soil. $\bar{\sigma'_v}$ = The average effective vertical stress in the soil along pile. β = Friction factor.

 N_q = Bearing capacity factor.

4.2.3 Cohesion piles

where; c_u = The undrained shear strength.

 $\bar{c_u}$ = The average undrained shear strength.

 α = Adhesion factor.

N = 6-9, end bearing capacity factor.

4.2.4 Design value of bearing capacity (for ultimate limit state)

$$R_{c,d} = \frac{1}{\gamma_{Rd}} \cdot \left(\frac{q_b \cdot A_b}{\gamma_b} + \frac{q_s \cdot A_s}{\gamma_s} \right)$$
(4.34)

where; γ_{Rd}

= Model factor.= Toe resistance factor.

 γ_b = Toe resistance factor. γ_s = Shaft resistance factor.

Tabell 4.2	Partialkoefficienter för slagna pålar, CFA och grävpålar enligt VVFS
	2009:19.

Partialkoefficient	Slagna pålar Tabell A.6(S)	CFA och grävpålar Tabell A.7(S) samt A.8(S)
γb γs γt	1,2 1,2 1,2	1,3 1,3 1,3
γs,t	1,3	1,4

Tabell 4.3 Modellosäkerheter för friktionspålar (GEO).

Beräkningsmodell / provningsmetod	Modellfaktorer
	γRd
Geostatisk metod (baserad på friktionsvinkel) för pålar i friktionsjord	1,6
Dimensionering av pålar baserat på sonderingsresultat med CPT	1,4
Dimensionering av pålar baserat på övriga sonderingsmetoder, t ex HfA,	1,5
SPT och Tr, med verifiering av jordart genom provtagning.	
Statisk provbelastning	1,0
Dynamisk provbelastning utvärderad endast med CASE-metoden.	1,2
CAPWAP-analys bör utföras för mantelburna pålar	
Dynamisk provbelastning med signalmatchning med CAPWAP-analys.	0,85
Dragbelastning utvärderad från CAPWAP. Dessutom bör en	1,3
reduktionsfaktor för dragbelastning på 0,7 användas.	
Pålslagningsformler med eller utan fjädringsmätning	Tillåts ej
Slagningssimulering (sk WEAP-analys)	Tillåts ej

Tabell 4.4 Modellosäkerheter för kohesionspålar (GEO).

Beräkningsmodell / provningsmetod	Modellfaktorer
	γRd
Odränerad analys (α-metod). Metoden ska alltid användas för lösa leror.	1,1
Dränerad analys (β-metod)	1,2
Statisk provbelastning	1,0
Dynamisk provbelastning, CASE-metod	Tillåts ej
Dynamisk provbelastning med signalmatchning med CAPWAP-analys.	1,0
Kalibrering mot statisk provbelastning enligt EN 1997-1, avsnitt 7.5.3(1)	
Pålslagningsformler med eller utan fjädringsmätning	Tillåts ej
Slagningssimulering (sk WEAP-analys)	Tillåts ej

4.2.5 Settlements

Action effect in a pile:

$$E = Q_{\infty} + \int_0^z q_s \, dA \tag{4.35}$$

The resistance at depth z:

$$R = R_{toe} + \int_{z}^{L_p} q_s \, dA \tag{4.36}$$

where; $\begin{array}{ll} Q_{\infty} & = \mbox{Long-time loading of the pile.} \\ R_{toe} & = \mbox{Toe resistance.} \\ q_b & = \mbox{Shaft resistance.} \end{array}$

$$L_p$$
 = Length of pile.

Redistribution of the load:

$$\Delta \sigma = \frac{Q}{L_p - z_n} \frac{z - z_n}{B[B + (z - z_n)]} \qquad \text{for} \qquad z_n < z < L_p \tag{4.37}$$

$$\Delta \sigma = \frac{Q}{[B + (z - L_p)][B + (z - z_n)]} \quad \text{for} \quad z > L_p \tag{4.38}$$

where; z_n = Depth on the neutral plane. B = Width of the foundations.

5 Settlements, Time dependence

5.2 Coefficient of consolidation

For the case with constant permeability:

$$c_{v} = k \cdot \frac{M}{\gamma_{w}}$$
(5.1)
where; $c_{v} = \text{Coefficient of consolidation } [\text{m}^{2}/\text{s or } \text{m}^{2}/\text{year}]$

$$k = \text{Permeability } [\text{m}^{2}/\text{s}] \text{ or } [\text{m}^{2}/\text{year}]$$

$$M =$$
Compression modulus [kPa]

 γ_w = Unit weight of water, [kN/m³]

Time factor:

$$T_{v} = c_{v} \cdot \frac{t}{d^{2}}$$
(5.2)
where; $T_{v} = \text{Time factor}$
 $c_{v} = \text{Coefficient of consolidation } [\text{m}^{2}/\text{s or m}^{2}/\text{year}]$
 $t = \text{time [s or year]}$
 $d = \text{Half of soil depth, [m]}$

The settlement at time t:

$$\delta_t = U_v \cdot \delta_{tot}$$
where; U_v = The average degree of consolidation
 δ_t = Settlement at time t
 δ_{tot} = Total or final settlement
$$\delta_{tot} = 0$$
(5.3)

6 Retaining structures

6.1.1 Active earth pressure

For clay:

$$P_{ad} = (\sigma_z - 2 \cdot c_{ud}) \tag{6.1}$$

For frictional material:

$$P_{ad} = (\sigma_z - p_w) \cdot \tan^2(45^\circ - \frac{\phi'_d}{2}) + p_w$$
(6.2)

where; P_{ad} = Active earth pressure, in [kPa] σ_z = Vertical stress in the soil, in [kPa] c_{ud} = Material cohesion, in [kPa] p_w = Ground water pressure [kPa] ϕ'_d = Angle of internal friction [deg]

6.1.2 Passive earth pressure

For clay:

$$P_{pd} = (\sigma_z + 2 \cdot c_{ud}) \tag{6.3}$$

For frictional material:

$$P_{pd} = (\sigma_z - p_w) \cdot \tan^2(45^\circ + \frac{\phi'_d}{2}) + p_w \quad (6.4)$$

Earth pressure if clay exists at the bottom of the excavation pit:

$$P_{net,d} = N_{cb} \cdot c_{ud} - (\gamma \cdot H + q_d) \qquad (6.5)$$

where; P_{pd} = Passive earth pressure, in [kPa]

- σ_z = Vertical stress in the soil, in [kPa]
- N_{cb} = Bearing capacity factor
- H = Depth to bottom of excavation pit, in [m]
- c_{ud} = material cohesion, in [kPa]
- p_w = Ground water pressure [kPa]
- ϕ_d' = Angle of internal friction [deg]

6.1.3 Static equilibrium

Length of the sheet pile wall:

$$P_{net,d} \cdot e_{pn} - \gamma_{Sda} \cdot P_{da} \cdot e_{pda} \tag{6.6}$$

Anchor or strut force:

$$S_{net,d} = P_{net,d} - \gamma_{Sda} \cdot P_{ad} \tag{6.7}$$

where; P_{ad} = Active earth pressure, in [kPa] γ_{Sda} = Partial coefficient $P_{net,d}$ = Resulting net pressure, in [kPa] $S_{net,d}$ = Horizontal force at equilibrium, in [kPa]

6.1.4 Stability of the excavation bottom

Reliability condition, bottom heave:

$$1.1\,\gamma_d\,(\sigma_{vHd} - p_d) \le \gamma_{Rdp}\,N_{cb}\,c_{ud}^*$$

where; γ_{Rdp} = Partial coefficient c^*_{ud} = mean value of the undrained shear strength below escavation bottom

Condition for hydraulic uplift:

$$\gamma_w H_w \le \frac{0.9 \, \gamma_{soil} \, d}{1.1 \, \gamma_d}$$

Condition for hydraulic erosion:

$$i < i_{crit} = \frac{\gamma_{soil}'}{\gamma_w \, \gamma_{Rd}}$$

 $\gamma_{Rd} = 1.5$ for coarse material and 2.5 for silt.

Lime/Cement columns $\mathbf{7}$

7.1For the elastic zone- zone B:

M_{bl}	$a_{ock} = a \cdot a$	$E_{col} + (1-a) \cdot M_{soil}$	(7.1)
where;	M_{block}	= Modulus of compression for soil-coloumn composite, [kPa]	
	E_{col}	= Modulus of elasticity for LCC, [kPa]	
	M_{soil}	= Modulus of compression for the soil, [kPa]	
	a	= Proportion of column area per total unit area, i.e $(\pi r^2/s^2)$	

Strain in block:

$$\varepsilon_{block} = \frac{\Delta \sigma_{block}}{M_{block}} \tag{7.2}$$

where; $\Delta \sigma_{block}$ = Average stress increase in block, [kPa] = Strain level in block ε_{block}

Stress increase in soil:

$$\Delta \sigma_{soil} = \Delta \sigma_{block} \cdot \frac{M_{soil}}{M_{block}} \tag{7.3}$$

Stress increase in column:

$$\Delta \sigma_{col} = \Delta \sigma_{block} \cdot \frac{E_{col}}{M_{block}} \tag{7.4}$$

7.2For the plastic zone - zone A:

The strength of the column:

$$f_{LCC} = 1.5 \cdot c_{u,col} + 3 \cdot \sigma'_{h,col} \tag{7.5}$$

 $c_{u,col}$ = The undrained shear strength of the columns, [kPa] where; $\sigma_{h,col}^{\prime}~~=$ The horizontal effective stress in the soil against the column, [kPa] f_{LCC} = The strength of the column, [kPa]

The horizontal effective stress, $\sigma'_{h,col}$ can be calculated as:

$$\sigma'_{h,col} = K_0 \cdot \sigma'_{v0} + 0.5 \cdot \Delta \sigma'_{soil} \tag{7.6}$$

Stress levels in soil and columns:

$$\Delta\sigma_{col,pl} = f_{LCC} - \sigma'_{v0} \tag{7.7}$$

$$\Delta\sigma_{soil} = \frac{\Delta\sigma_{block} - a \cdot \Delta\sigma_{col,pl}}{1 - a} \tag{7.8}$$

where; σ

$$\begin{array}{ll} \sigma'_{v0} & = \mbox{ The effective stress in the columns before the application of the load, [kPa]} \\ \sigma'_{col,pl} & = \mbox{ Stress level in the columns, in [kPa]} \\ f_{LCC} & = \mbox{ The strength of the column, [kPa]} \\ a & = \mbox{ Proportion of column area per total unit area, i.e} (\pi r^2/s^2) \end{array}$$

Using the above the stress in the soil for z = 0 and z = Zlim can be solved as:

$$\Delta\sigma_{soil}(0) = \frac{2 \cdot q - 3 \cdot a \cdot c_{u,col}}{2 + a} \tag{7.9}$$

$$\Delta \sigma_{soil}(Z_{lim}) = \Delta \sigma_{block}(Z_{lim}) \cdot \frac{M_{soil}}{M_{block}}$$
(7.10)

Stress levels for soil/column block in zone A

$$\Delta \sigma_{blocklim} = M_{block} \cdot \frac{1.5 \cdot c_{u,col} + \sigma'_{v0}}{E_{col} - 1.5 \cdot M_{soil}}$$
(7.11)

where;
$$c_{u,col}$$
 = The undrained shear strength of the columns, [kPa]
 σ'_{v0} = The effective stress in the columns before the application of the load, [kPa]
 M_{block} = Modulus of compression for soil-coloumn composite, [kPa]
 E_{col} = Modulus of elasticity for LCC, [kPa]
 M_{soil} = Modulus of compression for the soil, [kPa]

7.3 Stress increase at the border between zone A and B

Columns extend to firm ground:

$$\Delta \sigma_{block} = q \tag{7.12}$$

where; $q = \text{The applied load, in [kPa]} \Delta \sigma_{block} = \text{Average stress increase in block, [kPa]}$

Columns which do not reach firm ground:

$$\Delta \sigma_{block} = \eta_{LC} \cdot q + (1 - \eta_{LC}) \cdot q \cdot \frac{B}{(B+z)}$$
(7.13)

where; q = The applied load, in [kPa] $\Delta \sigma_{block}$ = Average stress increase in block, [kPa] η_{LC} = Key factor B = Width of the load given in [m] z = Depth in [m]

The Key factor η_{LC} determining what portion of the external load is transmitted unchanged to the bottom of the stabilized soil:

$$\eta_{LC} = \left(\frac{D}{H}\right)^{1/\nu} \tag{7.14}$$

where; H = Depth down to firm layer, in [m]D = Length of columns, in [m]

and v is calculated as:

$$v = \left(\frac{M_{block}}{M_{soil}}\right)^{0.1} - \left(\frac{M_{soil}}{M_{block}}\right)^{0.1} \tag{7.15}$$